Math, asked by rahulaisectda7276, 1 year ago

. The difference between the sides at right angles in a right-angled triangle is 14 cm.

The area of the triangle is 120 cm2

. Calculate the perimeter of the triangle.

Answers

Answered by noahSheril
7
The answer i had written in the notebook
here are its pictures
hope it had been helpfull
The perimeter is 60cm
Attachments:
Answered by silentlover45
8

\underline\mathfrak{Given:-}

  • A right angle triangle is 14cm.
  • The area of the triangle is 120cm².

\underline\mathfrak{To \: \: Find:-}

  • Find the perimeter of the triangle ......?

\underline\mathfrak{Solutions:-}

  • Let the side containing right angle be x cm and (x - 14) cm.

Then, it's area

\: \: \: \: \: = \: \: {[\frac{1}{2} \: \times \: x \: \times \: {(x \: - \: {14})}]} \: {cm}^{2}

Given, Area = 120 cm²

\: \: \: \: \: \leadsto \: \: \frac{1}{2} \: \times \: x \: \times \: {(x \: - \: {14})} \: \: = \: \: {120}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: {14x} \: \: = \: \: {240}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: {14x} \: - \: {240} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x}^{2} \: - \: {24x} \: + \: {10x} \: - \: {240} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {x} \: {({x} \: - \: {24})} \: + \: {10} \: {({x} \: - \: {24})} \: \: = \: \: {0}

\: \: \: \: \: \leadsto \: \: {({x} \: + \: {10})} \: \: \: {({x} \: - \: {24})}

\: \: \: \: \: \: \leadsto \: \: {x} \: \: = \: \: {-10} \: \: \: and \: \: \: {x} \: \: = \: \: {24}

\: \: \: \: \: \: \: \: \: {x} \: \: = \: \: {24} \: \: \: but \: \: \: {x} \: \: \neq \: \: {-10}

Other side = (x - 14)

= 24 - 14

= 10cm.

By the Pythagoras theorem:

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: \sqrt{{p}^{2} \: + \: {b}^{2}}

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: \sqrt{{(24)}^{2} \: + \: {(10)}^{2}}

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: \sqrt{{576} \: + \: {100}}

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: \sqrt{676}

\: \: \: \: \: \leadsto \: \: {h} \: \: = \: \: {26} \: cm

Now,

  • a = 24
  • b = 10
  • c = 26

Perimeter of triangle = (a × b × c)

= 24 + 10 + 26

= 60 cm.

Hence, the perimeter of triangle is 60cm.

Similar questions