Math, asked by Ligature, 4 days ago

The difference between two acute angles of a right angled triangle is 7π^c/30

Find the angles of the triangle in degree​

Answers

Answered by Okhey
15

 \bf \large \star Question :-

  • The difference between two acute angles of a right angled triangle is 7π/30

To find : The angles of the triangle in degree.

\bf\huge\fbox{Answer :-}

 \bf \small\text{Consider \:the \:  \:following -  }

❒ Let's assume that x and y are the acute angle of triangle in degree.

 \bf\large \star Step  \: by  \: step  \:  \: Explanation :-

\large \bf \green\bigstar \: \: \red{ \underbrace{ \underline{Here}}}

\longmapsto \sf\:x -y =  \frac{ {7\pi}^{c} }{30} =  \sf \purple( \frac{7\pi}{30}  \times  \frac{180}{\pi}  {)}^{°} } \\

 \bf{\longmapsto  =  {42}^{°}  }

\large \bf \red\bigstar \: \: \pink{ \underbrace{ \underline{so}}}

\pink{ \large :\longmapsto  \underline {\boxed{{\bf x  - y  =  {42}^{°} } }}} \:  \: (1) \\

 \bf \large \dag We \:  Know \:  that  :

☞The triangle is right angled

\green\dashrightarrow\underline{\underline{\sf  \red{x + y =  {90}^{°} }} } \:  \:  \: (2)

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{now}}}

●Add the both equation (1) and (2)

\large \bf \red\bigstar \: \: \blue{ \underbrace{ \underline{we \: get}}}

:\longmapsto \rm  \: x - y  + x + y \\ \\ :\longmapsto 4 {2}^{°}  +  {90}^{°}\\\\ :\longmapsto \sf2x =  {132}^{°}\\\\ :\longmapsto  {66}^{°}

 \bf{Place  \: this  \: in \:  equation  \:  \: (1)}

\longmapsto \rm   {66}^{°}  - y =  {42}^{°} \\\\ \longmapsto  \sf{66}^{°}  -  {42}^{°} = y \\\\\longmapsto \sf{y =  {24}^{°} }

 \huge\underline{\green{\underline{\frak{\pmb{\text Therefore}}}}}

✧ The angle of triangle are :

ミ66°

ミ90°

ミ24°

  • @Okhey
Similar questions