Math, asked by chauhantamana856, 1 month ago

The difference between two numbers is 26 and one number is three times the other. Find them.​

Answers

Answered by Anonymous
47

 \bullet \:\sf \blue{Let:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Let two numbers be x and y

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet \: \sf \blue{Solution:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

One number is three times the other means x = 3y -------- eq (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

The difference between two numbers is 26 means x - y = 26 -------- eq (2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substitute the value of x in eq(2)

 \small \sf \blue{x - y = 26}

 \small \sf \blue{3y - y = 26}

 \small \sf \blue{2y = 26}

 \small \sf \blue{y = \frac{26}{2} }

 \small \sf \blue{y =  \cancel\frac{26}{2} }

  \boxed{ \bullet \: \small \sf \blue{y = 13 }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Substitute the value of y in eq (1)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \small \sf \blue{x  = 3y}

 \small \sf \blue{x  = 3 \times 13}

  \boxed{ \bullet \: \small \sf \blue{x = 39}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Two numbers are 13 and 39

Answered by Anonymous
0

જો બકા મને નઇ આવડતું એટલે સોરી હો યાર

Similar questions