Math, asked by tgt96321, 1 year ago

The difference between two positive integers is 30.The ratio of these integers is 2:5.Find the integers

Answers

Answered by Anonymous
11

\underline{\underline{\Large{\mathfrak{Solution : }}}}



\textsf{Let the integers are x and y . } \\ \\ <br /><br />\underline{\textsf { According to the question , }} \\ \\ <br />

<br />\mathsf{\implies x \: - \: y \: = \: 30 }  \\  \\  \mathsf{ \implies x \:  -  \: y \:  -  \: 30 \:  =  \: 0 \qquad...(1)}\\ \\ \underline{\textsf{Now,}} \\  \\  \mathsf{\implies x \: : \: y \: = \: 2 \: : \: 5 }  \\  \\  \mathsf{ \implies \:  \dfrac{x}{y}  \:  =  \:  \dfrac{2}{5} } \\  \\  \mathsf{ \implies 5x \:  =  \: 2y} \\   \\ \mathsf{   \:  \:  \therefore  \: 5x \:  -  \: 2y \:  = \:   0 \qquad...(2)}




\underline{\textsf{Using Cross Multiplication Method : }} \\ \\ \textsf{Coe. of x \quad Coe. of y \quad Constant term }   \\  \\  \textsf{ \:  \:  \: 1 \quad \:  \:  \:  \:   \:  \:  - 1 \quad \:  \:  \:  \:  \:  \:   - 30} \\  \\  \textsf{ \:  \:  \: 5 \quad \:  \:  \:  \:  \:  \:  - 2 \quad \:  \:  \:  \:  \:  \:  \: 0} \\  \\  \mathsf{ \implies \dfrac{x}{( - 1 \:  \times  \: 0) \:  -  \:  ( - 30 \:  \times  \:  - 2)} \:  =  \:  \dfrac{y}{( - 30 \:  \times  \: 5) \:  -  \: ( 1 \:  \times  \: 0)}   \:  =} \\  \mathsf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \dfrac{1}{(1 \:  \times  \:  - 2) \:  -  \: ( - 1 \:  \times  \: 5)} }






  \mathsf{ \implies \dfrac{x}{  \:  -  \: 60}  \:  =  \:  \dfrac{ \:  \:  \:  \: y \: }{ - 150} \:  =  \:   \dfrac{1}{ - 2 \:  +  \: 5} } \\   \\ \\   \mathsf{ \implies \dfrac{x}{ - 60}  \:  =  \:  \dfrac{y}{ - 150} \:  =  \:  \dfrac{1}{3}  }



<br />\textsf{Now,} \\ \\ \mathsf{\implies \dfrac{x}{-60} \: = \:  \dfrac{ 1}{3}} \\ \\ \mathsf{\implies 3x \: = \: -60 } \\ \\ \mathsf{\implies x \: = \: \dfrac{-60}{3}} \\ \\ \mathsf{\therefore \:  \:  x \: = \: -20}<br />


<br />\textsf{And,} \\ \\ \mathsf{\implies \dfrac{y}{-150} \: = \: \dfrac{1}{3}} \\ \\ \mathsf{\implies 3y \: = \: -150} \\ \\ \mathsf{\implies y \: = \: \dfrac{-150}{3}} \\ \\ \mathsf{\therefore \: y \: = \: -50}



\Large{\boxed{\mathsf{Hence, integers  \: are \:  -20 \:  and \:  -50.}}}
Similar questions