Math, asked by krishad20, 9 months ago

The difference in simple interest and compound interest on a certain sum of money in 2 years at 18 % p.a. is Rs. 162. The sum is

Answers

Answered by kunal615
4

Answer:

The difference in simple interest and compound interest on a certain sum of money in 2 years at 18 % p.a. is Rs. 162. The sum is.

Answered by krishnaanandsynergy
5

Answer:

We can find the sum value using the given years (2), rate of interest (18%) and the difference of simple interest and compound interest (Rs.162).

The sum value is: Rs.5000

Step-by-step explanation:

Simple Interest  =\frac{PRT}{100}

Here P → Principle, R →Rate of Interest, T → Number of years.

Compound Interest =[P(1+\frac{R}{100} )^{T}]-P

Here also P → Principle, R →Rate of Interest, T → Number of years.

From the given question, difference in simple interest and compound interest is Rs.162. It should be written as,

compound interest - simple interest = 162

               \left \{ [P(1+\frac{R}{100} )^{T}]-P \right\}-\frac{PRT}{100}=162

Now apply R=18%, T=2 in the above equation.

          \left \{ [P(1+\frac{18}{100} )^{2}]-P \right\}-(\frac{P*18*2}{100})=162

Take L.C.M for 1 and \frac{18}{100}. It can be written as,

           \left \{ [P(\frac{100+18}{100} )^{2}]-P \right\}-(\frac{P*18*2}{100})=162

                \left \{ [P(\frac{118}{100} )^{2}]-P \right\}-(\frac{P*18*2}{100})=162

                 \left \{ [P(1.18 )^{2}]-P \right\}-(\frac{P*36}{100})=162    

                         1.3924P-P-0.36P=162

                                1.3924P-1.36P=162

                                             0.0324P=162

                                                       P=\frac{162}{0.0324}

Multiply by 10000 in both numerator and denominator.

                                                       P=\frac{1620000}{324}

                                                       P=5000

Final Answer: Sum Value or Principle =Rs.5000

Similar questions