Math, asked by jashan97208, 1 year ago

The digit of a two-digit number differ by 3. If the digit are interchanged, and the resulting number is added to the original no.,we get 143. What can be the original no.?​

Answers

Answered by Anonymous
30

\bold{\red{ANSWER}}

\rm{85}

\mathbb{\pink{EXPLANATION}}

\rm{Let\:The\:Required\:Two\:Digit\:Number\:Be\:xy}

\rm{This\:Two\:Digit\:Number\:Can\:Be\:Written\:Like\:This}

\boxed{\pink{10x+y}}

\boxed{\rm{When\:Digits\:Are\:Interchanged\:The\:New\:Number\:Becomes}}

\boxed{\pink{10y+x}}

\boxed{\pink{ACCORDING\:TO\:THE\:QUESTION}}

\rm{x-y=3}...\rm{Equation\:01}

\rm{10x+y+10y+x=143}

\rm{11x+11y=143}

\rm{x+y=\frac{13\times11}{11}}

\rm{x+y=13}...\rm{Equation\:02}

\boxed{\red{Now\:Add\:Both\:The\:Equations\:We\:Have}}

\rm{2x=16}

\rm{x=8}

\boxed{\rm{\red{Now\:Put\:The\:Value\:Of\:x\:In\:Equation\:01\:We\:Have}}}

\rm{8-y=3}

\rm{8-3=y}

\rm{y=5}

\therefore\rm{The\:Two\:Digit\:Number\:is\:\:\:85}

Answered by TheHeartyQueen
5

Answer:

Step-by-step explanation:

\rm{x-y=3}...\rm{Equation\:01}

\rm{10x+y+10y+x=143}

\rm{11x+11y=143}

\rm{x+y=\frac{13\times11}{11}}

\rm{x+y=13}...\rm{Equation\:02}

\boxed{\red{Now\:Add\:Both\:The\:Equations\:We\:Have}}

\rm{2x=16}

\rm{x=8}

\boxed{\rm{\red{Now\:Put\:The\:Value\:Of\:x\:In\:Equation\:01\:We\:Have}}}

\rm{8-y=3}

\rm{8-3=y}

\rm{y=5}

\therefore\rm{The\:Two\:Digit\:Number\:is\:\:\:85}

Similar questions