The digit of a two-digit number differ by 3. If the digit are interchanged, and the resulting number is added to the original no.,we get 143. What can be the original no.?
Answers
Answered by
30
...
...
Answered by
5
Answer:
Step-by-step explanation:
\rm{x-y=3}...\rm{Equation\:01}
\rm{10x+y+10y+x=143}
\rm{11x+11y=143}
\rm{x+y=\frac{13\times11}{11}}
\rm{x+y=13}...\rm{Equation\:02}
\boxed{\red{Now\:Add\:Both\:The\:Equations\:We\:Have}}
\rm{2x=16}
\rm{x=8}
\boxed{\rm{\red{Now\:Put\:The\:Value\:Of\:x\:In\:Equation\:01\:We\:Have}}}
\rm{8-y=3}
\rm{8-3=y}
\rm{y=5}
\therefore\rm{The\:Two\:Digit\:Number\:is\:\:\:85}
Similar questions