Math, asked by manikandankarthik98, 11 months ago

The dimensions of a cuboid are 3 cm, 2cm & 1 cm. Then find the length of the
diagonal of the cuboid.​

Answers

Answered by mohdainanali26
5

Answer:

√14

Step-by-step explanation:

length of the diagonal in cuboid=√l^2+b^2+h^2

=√3^2+2^2+1^2

=√9+4+1

=√14cm^2

=3.741cm

Answered by Agamsain
4

Answer :-

  • Diagonal of cuboid = 3.74 cm

Given :-

  • Length of cuboid = 3 cm
  • Width of cuboid = 2 cm
  • Height of cuboid = 1 cm

To Find :-

  • Diagonal of cuboid = ?

Explanation :-

As we know, we have formulae to find the diagonal of cuboid .

\blue { \boxed { \bf \bigstar \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2} \; \; \bigstar }}

\rm : \; \longmapsto \sqrt{(3)^2+(2)^2+(1)^2} \; \; \; cm

\rm : \; \longmapsto \sqrt{(9)+(4)+(1)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(13)+(1)} \; \; \; cm

\rm : \; \longmapsto \sqrt{(14)} \; \; \; cm

\rm : \; \longmapsto \sqrt{14} \; \; \; cm

\green { \underline { \boxed { \bf : \; \longmapsto 3.74 \; \; \; cm}}} \qquad \bf [Approx.]

Hence, the diagonal of the of the cuboid is 3.74 cm.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions