Math, asked by brain2874, 9 months ago

The dimensions of a tank are 70 m by 44 m by 3 m. This tank is being filled by a
pipe of radius 17.5 cm. If the pipe discharges water at the rate of 6 m per second,
how long will it take for the pipe to fill the tank?

Answers

Answered by Anonymous
8

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ pipe \ will \ take \ 4.44 \ hr \ to \ fill}

\sf{the \ tank.}

\sf\orange{Given:}

\sf{For \ cuboidal \ tank,}

\sf{\implies{Length(l)=70 \ m}}

\sf{\implies{Breadth (b)=44 \ m}}

\sf{\implies{Height (h)=3 \ m}}

\sf{For \ cylindrical \ pipe,}

\sf{\implies{Radius(r)=17.5 \ cm=0.175 \ m}}

\sf{\implies{Speed \ of \ water=6 \ m \ s^{-1}}}

\sf\pink{To \ find:}

\sf{How \ long \ will \ take \ for \ the \ pipe \ to}

\sf{fill \ the \ tank.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\underline{\underline{Concept:}}}

\sf{To \ fill \ a \ tank \ with \ water \ the \ pipe}

\sf{must \ have \ same \ volume \ of \ water.}

\boxed{\sf{Volume \ of \ cuboid=l\times \ b\times \ h}}

\boxed{\sf{Volume \ of \ cylinder=\pi\times \ r^{2}\times \ H}}

\sf{Volume \ of \ cuboidal \ tank=}

\sf{Volume \ cylindrical \ pipe.}

\sf{\therefore{l\times \ b\times \ h=\pi\times \ r^{2}\times \ h}}

\sf{\therefore{70\times44\times3=\frac{22}{7}\times0.175^{2}\times \ H}}

\sf{\therefore{H=\frac{9240\times7}{22\times0.175^{2}}}}

\sf{\therefore{H=\frac{420\times7\times10^{6}}{30625}}}

\sf{\therefore{H=0.096\times10^{6}}}

\sf{\therefore{H=96000 \ m}}

\sf{Distance=Height}

\sf{\therefore{Distance=96000 \ m}}

\boxed{\sf{Time(t)=\frac{Distance}{Speed}}}

\sf{\therefore{Time(t)=\frac{96000}{6}}}

\sf{\therefore{Time(t)=16000 \ seconds}}

\sf{But, \ 1 \ second=\frac{1}{3600} \ hr}

\sf{\therefore{Time(t)=\frac{16000}{3600} \ hr}}

\sf{\therefore{Time (t)=4.44 \ hr (approx)}}

\sf\purple{\tt{\therefore{The \ pipe \ will \ take \ 4.44 \ hr \ to \ fill}}}

\sf\purple{\tt{the \ tank.}}

Answered by TheSentinel
37

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{\orange{\underline{\green{The \ pipe \ will \ take \ 4.44 \ hr \ to \ fill}}}}

\rm{\orange{\underline{\green{the \ tank.}}}}

_________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{For \ cuboidal \ tank,} \\ \\

\rm{\longrightarrow{Length(l)=70 \ m}} \\

\rm{\longrightarrow{Breadth (b)=44 \ m}} \\

\rm{\longrightarrow{Height (h)=3 \ m}} \\

\rm{For \ cylindrical \ pipe,} \\ \\

\rm{\longrightarrow{Radius(r)=17.5 \ cm=0.175 \ m}} \\ \\

\rm{\longrightarrow{Speed \ of \ water=6 \ m \ s^{-1}}} \\ \\

_________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\rm{Time \ taken \ to \ fill \ the \ tank}

_________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\rm{As \ we \ know} \\ \\

\rm{To \ fill \ a \ tank \ with \ water \ the \ pipe} \\

\rm{must \ have \ same \ volume \ of \ water.}

\rm{\red{\boxed{\blue{Volume \ of \ cuboid=l\times \ b\times \ h}}}} \\ \\

\rm{\red{\boxed{\blue{Volume \ of \ cylinder=\pi\times \ r^{2}\times \ H}}}} \\ \\

\rm{Vol \ of \ cuboidal \ tank \ = \ Vol \ cylindrical \ pipe.} \\ \\

\rm{\implies{l\times \ b\times \ h=\pi\times \ r^{2}\times \ h}} \\ \\

\rm{\implies{70\times44\times3=\frac{22}{7}\times0.175^{2}\times \ H}} \\ \\

\rm{\implies{H=\frac{9240\times7}{22\times0.175^{2}}}} \\ \\

\rm{\implies{H=\frac{420\times7\times10^{6}}{30625}}} \\ \\

\rm{\implies{H=0.096\times10^{6}}} \\ \\

\rm{\implies{\blue{\boxed{\orange{H=96000 \ m}}}}}

\rm{Here \ we \ have \ to \ consider,} \\ \\

\rm\longrightarrow{\boxed{Distance=Height}}

\rm{\therefore{\blue{\boxed{\orange{Distance=96000 \ m}}}}} \\ \\

\longrightarrow\boxed{\rm{Time(t)=\frac{Distance}{Speed}}} \\ \\

\rm{\implies{Time(t)=\frac{96000}{6}}} \\ \\

\rm{\implies{Time(t)=16000 \ seconds}} \\ \\

\rm{\longrightarrow{Time(t)=\frac{16000}{3600} \ hr}} \\ \\

\rm{\implies{Time (t)=4.44 \ hr (approx \ value)}} \\ \\

\rm{\orange{\underline{\green{The \ pipe \ will \ take \ 4.44 \ hr \ to \ fill}}}}

\rm{\orange{\underline{\green{the \ tank.}}}}

___________________________________________

\rm\orange{Hope \ it \ helps \ :))}

Similar questions