Math, asked by RawaasVadaPav, 2 months ago

The direction cosines of A⃗=-i+2j+3k is ? please explain​

Answers

Answered by Anonymous
39

Given:-

  • A⃗=-i+2j+3k.

To Find:-

  • The Direction Cosines of A⃗=-i+2j+3k.

Solution:-

A⃗=-i+2j+3k

Direction Ratios are:-

a =  - 1

b =  + 2

c =  + 3

Magnitude of Vector A⃗ is |A⃗ | =  \sqrt{ {a}^{2} +  {b}^{2} +  {c}^{2}   }

|A⃗ | =  \sqrt{ { - 1}^{2}  +  {2}^{2}  +  {3}^{2} }

 =  > |A⃗ | =  \sqrt{ 1 + 4 + 9}

 =  > |A⃗ | =  \sqrt{14}

Let Direction Cosines of Vector A be

 \cos( \alpha )

,

 \cos( \beta )

and

 \cos( \gamma )

We Know that :-

 \cos( \alpha   )  \frac{a}{ |A⃗ | }

 \cos( \beta)  =  \frac{b}{ |A⃗ | }

and

 \cos( \gamma )  =  \frac{c}{ |A⃗ | }

 \therefore

 \cos( \alpha )  =  \frac{ - 1}{ \sqrt{14} }

 \cos( \beta )  =  \frac{ +2}{ \sqrt{14} }

 \cos( \gamma )  =  \frac{3}{ \sqrt{14} }

And we know that Directional Cosines are in the Form of ( \cos( \alpha ) , \cos( \beta ) , \cos( \gamma ) )

∴ Directional Cosines of the Given Vector A are:

( \frac{ - 1}{ \sqrt{14} } , \frac{ + 2}{ \sqrt{14} } ,  \frac{ + 3}{ \sqrt{14} } )

Answered by jiakher84
1

Answer:

Given:-

a_{10} = 25a

10

=25

a_{18} = 41a

18

=41

To Find:-

a _{14}a

14

Solution:-

We Know that

a _{n} = a + (n - 1)da

n

=a+(n−1)d

So,

a_{10} = a + (10 - 1)d = 25a

10

=a+(10−1)d=25

i.e,

= > a_{10} =a + 9d = 25..(1)=>a

10

=a+9d=25..(1)

And Similarly,

a_{18} = 41= a + (18 - 1)da

18

=41=a+(18−1)d

= > a_{18} = a + 17d = 41..(2)=>a

18

=a+17d=41..(2)

Now Subtracting equation (1) and (2)

a + 17d - a - 9d = 41 - 25a+17d−a−9d=41−25

= > 8d = 16=>8d=16

= > d = \frac{16}{8}=>d=

8

16

= > d = 2=>d=2

Now Substituting the value of d in Equation (1).

a + 9d = 25a+9d=25

= > a + 9 \times 2 = 25=>a+9×2=25

= > a = 18 = 25=>a=18=25

= > a = 25 - 18=>a=25−18

= > a = 7=>a=7

a=7

d= 2

Now, we will Find a _{14}a

14

So,

a _{14} = 7 + 13 \times 2a

14

=7+13×2

= > a _{14} = 7 + 26=>a

14

=7+26

= > a _{14} = 33=>a

14

=33

∴The 14th term of the A.P Is 33.

Hope it helps you keep smiling :)

Similar questions