Physics, asked by taniya509730, 7 months ago

The displacement of moving particle is x=4sin(4t)+3cos(4t) where x is in cm and t is in seconds.Show that its motion in SHM , calculate its time period and maximum velocity and maximum acceleration

Answers

Answered by shadowsabers03
14

Given, the displacement of the particle,

\sf{\longrightarrow x=4\sin(4t)+3\cos(4t)}

Dividing both sides by 5,

\sf{\longrightarrow\dfrac{x}{5}=\dfrac{4}{5}\sin(4t)+\dfrac{3}{5}\cos(4t)}

Let \alpha be an angle such that \sf{\cos\alpha=\dfrac{4}{5}} and \sf{\sin\alpha=\dfrac{3}{5}.}

Then,

\sf{\longrightarrow\dfrac{x}{5}=\sin(4t)\cos\alpha+\cos(4t)\sin\alpha}

\sf{\longrightarrow\dfrac{x}{5}=\sin(4t+\alpha)\quad\quad\![\,\sin(a+b)=\sin a\cos b+\cos a\sin b\,]}

\sf{\longrightarrow x=5\sin(4t+\alpha)}

Now the equation is in the form \sf{x=A\sin(\omega t+\phi)} where,

  • \sf{A=5\ cm\quad\quad\![\,x\ is\ in\ cm\,]}
  • \sf{\omega=4\ rad\,s^{-1}}
  • \sf{\phi=\alpha=\cos^{-1}\left(\dfrac{4}{5}\right)=\sin^{-1}\left(\dfrac{3}{5}\right)}

Hence the motion of the particle is SHM.

Time period of the particle,

\sf{\longrightarrow T=\dfrac{2\pi}{\omega}}

\sf{\longrightarrow T=\dfrac{2\pi\ rad}{4\ rad\,s^{-1}}}

\sf{\longrightarrow\underline{\underline{T=\dfrac{\pi}{2}\ s}}}

Maximum velocity of the particle,

\sf{\longrightarrow v_{max}=A\omega}

\sf{\longrightarrow v_{max}=5\ cm\times4\ rad\,s^{-1}}

\sf{\longrightarrow\underline{\underline{v_{max}=20\ cm\,s^{-1}}}}

Maximum acceleration of the particle,

\sf{\longrightarrow a_{max}=A\omega^2}

\sf{\longrightarrow a_{max}=5\ cm\times4^2\ rad^2\,s^{-2}}

\sf{\longrightarrow\underline{\underline{a_{max}=80\ cm\,s^{-2}}}}

Answered by llBrainlySpiderll
48

GiVeN ;-

  • The displacement of a moving particle is represented as,

\bf{\red{\longrightarrow}}\:x\:=\:4\:\sin(4t)\:+\:3\:\cos(4t)\: \\

  • x is in centimetre .

  • t is in second .

 \\

To FiNd ;-

\bf{\pink{(1)}} It's motion in S.H.M .

\bf{\pink{(2)}} It's time period .

\bf{\pink{(3)}} It's maximum velocity .

\bf{\pink{(4)}} It's maximum acceleration .

 \\

SoLuTiOn ;-

◍ To convert the given displacement equation in it's motion in S.H.M, we can find that equation as in the form of '\bf{x\:=\:A\:\sin\:(\omega{t}\:+\:\phi)\:}' .

\bf{\red{\longrightarrow}}\:x\:=\:4\:\sin(4t)\:+\:3\:\cos(4t)\: \\

\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\dfrac{4}{5}\:.\:\sin(4t)\:+\:\dfrac{3}{5}\:.\:\cos(4t)\: \\

Take as,

  • \bf{\dfrac{4}{5}\:=\:\cos{\alpha}}

  • And \bf{\dfrac{3}{5}\:=\:\sin{\alpha}} \\

\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\cos{\alpha}\:.\:\sin(4t)\:+\:\sin{\alpha}\:.\:\cos(4t)\: \\

\bf{\red{\longrightarrow}}\:\dfrac{x}{5}\:=\:\sin\:(4t\:+\:\alpha)\: \\

\bf{\red{\longrightarrow}}\blue{\:x\:=\:5\:\sin\:(4t\:+\:\alpha)\:} \\

➤ Comparing with the standard equation, we get

  • A = amplitude = 5

  • \bf{\omega} = 4

  • \bf{\phi} = \bf{\alpha} = \bf{\cos^{-1}{\Big(\dfrac{4}{5}\Big)}} = \bf{\sin^{-1}{\Big(\dfrac{3}{5}\Big)}} \\

The given displacement equation is the motion of S.H.M .

___________________________

We know that,

\huge\star \bf\orange{Time\:period\:=\:\dfrac{2\:\pi}{\omega}\:} \\

\rm{\implies\:T\:=\:\dfrac{2\:\pi}{4}\:} \\

\bf{\implies\:T\:=\:\dfrac{\pi}{2}\:sec\:} \\

It's time period is \bf{\dfrac{\pi}{2}\:sec\:} .

___________________________

We know that,

\huge\star \bf\orange{v_{max}\:=\:A\:\omega\:} \\

\rm{\implies\:v_{max}\:=\:5\times{4}\:} \\

\bf{\implies\:v_{max}\:=\:20\:cm.s^{-1}\:} \\

It's maximum velocity is \bf{20\:cm.s^{-1}\:} .

___________________________

We know that,

\huge\star \bf\orange{a_{max}\:=\:A\:{\omega}^2\:} \\

\rm{\implies\:a_{max}\:=\:5\times{4^2}\:} \\

\bf{\implies\:a_{max}\:=\:80\:cm.s^{-2}\:} \\

It's maximum acceleration is \bf{80\:cm.s^{-2}\:} .

Similar questions