Physics, asked by achintyaparamanik224, 1 year ago

The displacement x of a particle of mass m moving in a straight line varies with time t as x=kt^3/2 under the action of a force F where k is constant. Calculate the work done by the force

Answers

Answered by VineetaGara
0

Calculate the work done by the force:

Given: Displacement (x) is given as a function of time(t)

             x = kt^{\frac{3}{2} }

             F = force

             m = mass

             k = constant

Solution:

Work done by Force = Force x Displacement

                                    = F x kt^{\frac{3}{2} }

Force = mass x acceleration

Acceleration = \frac{d^{2}x }{dt^{2} } = k · \frac{d^{2}(t^{\frac{3}{2} }) }{dt^{2} }

                               = k ·  \frac{d }{dt }(\frac{3}{2} t^{\frac{1}{2} })

                               = \frac{3k}{4} t^{\frac{-1}{2} }

                               = \frac{3k}{4\sqrt{t} }

Force = mass x acceleration

       F   = m x \frac{3k}{4\sqrt{t} }

      F     =  \frac{3km}{4\sqrt{t} }

Work done by Force = Force x Displacement          

                                W = \frac{3km}{4\sqrt{t} } x kt^{\frac{3}{2} }

                                W = \frac{3tk^{2} m}{4} }

Therefore, Work done by Force F is \frac{3tk^{2} m}{4} }.

Similar questions