The distance between (a cos alpha , a sin beta) and (a cos beta , a sin alpha) is
Answer the problem with full steps
Answers
Answered by
53
let the distance between A (x1,y1) and B (x2,y2)
= √(x2-x1)² +(y2-y1)²
here A (a cos α, a sin β) = (x1,y1)
B(a cosβ, a sin α) = (x2,y2)
AB = √(acos β - a cos α)² + ( a sin α - a sin β)²
=√a²cos² β + a² cos² α -2a² cosαcosβ +a²sin²α + a² sin² β - 2a² sin α sin β
= √a²(cos²β +sin² β) + a²(cos² α +sin² α) -2a²(cosαcosβ+sinαsinβ)
= √a²+a² -2a² cos(α-β)
= √2a² -2a² cos(α-β)
= √2a²[1-cos(α-β)]
=a √2[1-cos(α-β)]
= √(x2-x1)² +(y2-y1)²
here A (a cos α, a sin β) = (x1,y1)
B(a cosβ, a sin α) = (x2,y2)
AB = √(acos β - a cos α)² + ( a sin α - a sin β)²
=√a²cos² β + a² cos² α -2a² cosαcosβ +a²sin²α + a² sin² β - 2a² sin α sin β
= √a²(cos²β +sin² β) + a²(cos² α +sin² α) -2a²(cosαcosβ+sinαsinβ)
= √a²+a² -2a² cos(α-β)
= √2a² -2a² cos(α-β)
= √2a²[1-cos(α-β)]
=a √2[1-cos(α-β)]
mysticd:
u'r welcome
Answered by
79
given,
(a cosx, a siny) (a cosy, a sinx)
Distance = √(acosy - acosx)²+(asinx-asiny)²
= √(a²cos²y+a²cos²x-2(acosy)(acosx))+(a²sin²x+a²sin²y-2(asinx)(asiny))
= √a²cos²y+a²cos²x-2a²cosxcosy+a²sin²x+a²sin²y-2a²sinxsiny
= √a²cos²x+a²sin²x+a²cos²y+a²sin²y -2a²cosxcosy-2a²sinxsiny
= √a²(cos²x+sin²x)+a²(cos²y+sin²y)-2a²(cosxcosy+sinxsiny)
= √a²+a²-2a²(cos(x-y))
= √2a²-2a²(cos(x-y))
= √2a²(1-cos(x-y))
= √2a²(2sin²(x-y/2))
= √4a²sin²(x-y/2)
= 2asin(x-y/2)
Used identities:
1)(a-b)²=a²+b²-2ab
2) sin²x+cos²x=1
3)cos(A-B) = cosAcosB+sinAsinB
4) sin(a/2) = √(1-cosa)/√2
squaring on both sides
=>sin²(a/2)=1-cosa/2
=>2sin²(a/2)=1-cosa
HOPE U UNDERSTAND
PLS MARK IT AS BRAINLIEST
(a cosx, a siny) (a cosy, a sinx)
Distance = √(acosy - acosx)²+(asinx-asiny)²
= √(a²cos²y+a²cos²x-2(acosy)(acosx))+(a²sin²x+a²sin²y-2(asinx)(asiny))
= √a²cos²y+a²cos²x-2a²cosxcosy+a²sin²x+a²sin²y-2a²sinxsiny
= √a²cos²x+a²sin²x+a²cos²y+a²sin²y -2a²cosxcosy-2a²sinxsiny
= √a²(cos²x+sin²x)+a²(cos²y+sin²y)-2a²(cosxcosy+sinxsiny)
= √a²+a²-2a²(cos(x-y))
= √2a²-2a²(cos(x-y))
= √2a²(1-cos(x-y))
= √2a²(2sin²(x-y/2))
= √4a²sin²(x-y/2)
= 2asin(x-y/2)
Used identities:
1)(a-b)²=a²+b²-2ab
2) sin²x+cos²x=1
3)cos(A-B) = cosAcosB+sinAsinB
4) sin(a/2) = √(1-cosa)/√2
squaring on both sides
=>sin²(a/2)=1-cosa/2
=>2sin²(a/2)=1-cosa
HOPE U UNDERSTAND
PLS MARK IT AS BRAINLIEST
Similar questions