Math, asked by manoharbhardwaj464, 1 month ago

The distance between the points ( 5, -9 ) and ( 11, y ) is 10 units . Find the values of y. ​

Answers

Answered by FiercePrince
8

Given : The distance between the points ( 5, -9 ) and ( 11, y ) is 10 units .

Need To Find : The Value of y ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀✇ Formula to Calculate  Distance between two points ( x₁ , y₁ ) and ( x₂ , y₂ ) is Given by — 

\qquad \star\:\pmb{\underline {\boxed {\sf \: Distance \:=\: \sqrt{ \bigg( x_2 - x_1 \bigg)^2 \: +\:\bigg( y_2 - y_1\:\bigg)^2}\:\:}}}\:\\\\

Where ,

  • x₁ = 5 ,

  • x₂ =  11 ,

  • y₁ =  9 &

  • y₂ = y . 

\\\qquad \dag\underline {\frak{ Substituting \:known \:Values \:in Formula \:\::\:}}\\\\

 :\implies \sf  \: Distance \:=\: \sqrt{ \bigg( x_2 - x_1 \bigg)^2 \: +\:\bigg( y_2 - y_1\:\bigg)^2}\:\: \\\\\\  :\implies \sf  \: 10 \:=\: \sqrt{ \bigg( 11  - 5 \bigg)^2 \: +\:\bigg( y  - \:\big\{ - 9\big\}\:\bigg)^2}\:\: \\\\\\  :\implies \sf  \: 10 \:=\: \sqrt{  6^2 \: +\:\bigg( y  + \: 9 \:\bigg)^2}\:\: \\\\\\   :\implies \sf  \: 10 \:=\: \sqrt{  36 \: +\:\bigg( y  + \: 9 \:\bigg)^2}\:\: \\\\\\   :\implies \sf  \: 10^2 \:=\:   36 \: +\:\big( y  + \: 9 \:\big)^2\:\: \\\\\\  :\implies \sf  \: 100 \:-\:36\:=\: \:\big( y  + \: 9 \:\big)^2\:\: \\\\\\  :\implies \sf  \: 64\:=\: \:\big( y  + \: 9 \:\big)^2\:\: \\\\\\ :\implies \sf  \:  \:\big( y  + \: 9 \:\big)^2\:\:=\: 64\: \\\\\\ :\implies \sf  \:  \:\big( y  + \: 9 \:\big)\:\:=\: \pm\sqrt{64}\: \\\\\\ :\implies \sf  \:  \: y  + \: 9 \:\:\:=\: \pm 8\: \\\\\\:\implies \pmb {\underline {\boxed {\purple {\:\frak{ \:y\:\:=\:-1\:or\:-17\:}}}}}\:\bigstar \: \\\\\\

\qquad \therefore \:\underline {\sf Hence \:,\:The\:Value \:of\:y\:is\:\pmb{\sf -1\:or\:-17\:}\:.\:}\\

Similar questions