Math, asked by dsuryatej5718, 10 months ago

The distance between the points A ( 1 -1 3) B ( 2 3 -5)

Answers

Answered by vishesh5854
1

Step-by-step explanation:

BY THE DISTANCE FORMULA, WE HAVE

AB =

 \sqrt{ {(x2 - x1) + (y2 - y1)}^{2} }

AB =

 \sqrt{ {(23 - 1)}^{2}  + {( - 5 - 13)}^{2}  }

 \sqrt{ {(22)}^{2} + { ( - 18)}^{2}  }

 \sqrt{484 + 324}

 \sqrt{808}

28.42 \: units

HOPE IT HELPS ;) PLZ MARK IT THE BRAINLIEST

Answered by Anonymous
69

Step-by-step explanation:

The distance between two distinct points whose coordinates are

 (x_{1}, y_{1} , z_{1} ) \:  \:  \: and \:  \: ( x_{2} , y_{2} , z_{2})

is

AB \: =  \sqrt{ {( x_{2} }-  x_{1}   )^{2} +  (y_{2}   -  y_{1} )^{2}   +  {( z_{2} -  z_{1} })^{2} }

where

 x_{1} = 1  \:  \:  \:  \:  \:  \: x_{2} = 2\\  y_{1}  =  - 1  \:  \:  \:  \:  \: y_2 = 3 \\   z_{1} = 3 \:  \:  \:  \: z_{2} =  - 5

Now put this values in the given formula.

 AB \: = \sqrt{( {2 - 1)}^{2}  +  {(3 + 1)}^{2} +  {( - 5 - 3)}^{2}  }  \\  \\  =>\sqrt{ {(1)}^{2}  +  {(4)}^{2}  +  {( - 8)}^{2} }  \\  \\  =>\sqrt{1 + 16 + 64}  \\  \\  =>\sqrt{17 + 64}  \\  \\   =>\sqrt{81}  \\  \\ =>9

Similar questions