Math, asked by Aashi567, 9 months ago

The distance between the points A(a sin α, a cos α)and B (a cos α, -a sin α)is

Answers

Answered by Anonymous
3

Answer:

✓2a

Step-by-step explanation:

given points are

A(a sin α, a cos α) and B (a cos α, -a sin α)

using distance formula,

AB =  \sqrt{ {(acos \alpha  - asin \alpha )}^{2} +{( - asin \alpha  - acos \alpha )}^{2}  }

Taking a² common, we get

AB =  a \times \sqrt{ {(cos \alpha  - sin \alpha )}^{2} +{( - sin \alpha  - cos \alpha )}^{2}  }

on simplifying, -(minus) is taken out since, -1 x -1=1

AB =  a \times \sqrt{ {(cos \alpha  - sin \alpha )}^{2} +{( sin \alpha   +  cos \alpha )}^{2}  }

now, we know that

(a+b)²+(a-b)²=2(a²+b²)

AB =  a \times \sqrt{ 2 \times( {sin}^{2} \alpha  +  {cos}^{2}  \alpha )   }

we know that,

sin²A+cos²A=1

so,

AB =   \sqrt{2} \times  a

Similar questions