Math, asked by MM10, 2 months ago

The distance between the points (a cos theta + B sin theta, 0) and (0,a sin theta - b cos theta), is

(a) a^2 +b^2
(b) a^2 - b^2

(c) \sqrt{a {}^{2} + b { }^{2}  }
(d) \sqrt{a {}^{2}  - b {}^{2}  }

Answers

Answered by Mankuthemonkey01
79

Answer is option c.

Distance formula

\sf\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}

Plug in the values

(x1, y1) = (acos∅ + bsin∅, 0)

(x2, y2) = (0, asin∅ - bcos∅)

\sf\sqrt{(acos\theta + bsin\theta)^2 + (bcos\theta - asin\theta)^2}

Squaring and rearranging

\sf\tiny{\sqrt{a^2cos^2\theta + a^2sin^2\theta + b^2\sin^2\theta + b^2cos^2\theta + 2absin\theta cos\theta - 2absin\theta cos\theta}}

Now, a²cos²∅ + a²sin²∅ = a²(cos²∅ + sin²∅) = a²

Using this, we get

\sf\sqrt{a^2 + b^2}

Answered by Anonymous
64

Answer:

Given :-

The distance between the points (a cos theta + B sin theta, 0) and (0,a sin theta - b cos theta), is

Solution :-

Apply distance formula

 \sf {\sqrt{(x_1 - x_2)^{2} + {(y_1 - y_2)}^{2}}}

By putting value

Here,

( \sf x_1, y_1 )= (acos∅ + bsin∅, 0)

 \sf (x_2,y_2) = (0, asin∅ - bcos∅)

Now,

D = √{(acos∅ + bsin∅)² + (bcos∅ - asin∅²)}

D = √{a²cos²∅ + a²sin²∅ + b²sin²∅ + b²cos²∅ + 2absin∅cos∅ - 2absin∅cos∅}

D = √{a²+ a²sin²∅ + b²sin²∅ + b² + 2absin∅ - 2absin∅}

Now,

D = √{a²+ a²+ b²+ b² + 2ab - 2ab}

D = √{a² + a² + b² + b²}

D = √{2a² + 2b²}

D = \sf \sqrt{a {}^{2} + b { }^{2} }

Similar questions