The distance between the points (a cos theta + B sin theta, 0) and (0,a sin theta - b cos theta), is
(a) a^2 +b^2
(b) a^2 - b^2
Answers
Answered by
79
Answer is option c.
Distance formula
Plug in the values
(x1, y1) = (acos∅ + bsin∅, 0)
(x2, y2) = (0, asin∅ - bcos∅)
Squaring and rearranging
Now, a²cos²∅ + a²sin²∅ = a²(cos²∅ + sin²∅) = a²
Using this, we get
Answered by
64
Answer:
Given :-
The distance between the points (a cos theta + B sin theta, 0) and (0,a sin theta - b cos theta), is
Solution :-
Apply distance formula
By putting value
Here,
()= (acos∅ + bsin∅, 0)
= (0, asin∅ - bcos∅)
Now,
D = √{(acos∅ + bsin∅)² + (bcos∅ - asin∅²)}
D = √{a²cos²∅ + a²sin²∅ + b²sin²∅ + b²cos²∅ + 2absin∅cos∅ - 2absin∅cos∅}
D = √{a²+ a²sin²∅ + b²sin²∅ + b² + 2absin∅ - 2absin∅}
Now,
D = √{a²+ a²+ b²+ b² + 2ab - 2ab}
D = √{a² + a² + b² + b²}
D = √{2a² + 2b²}
D =
Similar questions
English,
1 month ago
India Languages,
1 month ago
English,
2 months ago
Chemistry,
9 months ago
History,
9 months ago