Math, asked by sandeshHR, 1 year ago

the distance of a point (-6,y) is 10 units from origin the value of y is​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{The distance of (-6,y) from origin is 10 units}

\underline{\textbf{To find:}}

\textsf{The value of 'y'}

\underline{\textbf{Solution:}}

\textsf{The distance of (-6,y) from origin is 10 units}

\implies\mathsf{\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=10}

\implies\mathsf{\sqrt{(-6-0)^2+(y-0)^2}=10}

\implies\mathsf{\sqrt{36+y^2}=10}

\textsf{Squaring on bothsides we get}

\mathsf{36+y^2=100}

\mathsf{y^2=100-36}

\mathsf{y^2=64}

\textsf{Taking square root on bothsides,}

\implies\boxed{\bf\,y=\pm\,8}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{7cm}$\\\mathsf{The\;distance\;between\;(x_1,y_)\;and\;(x_2,y_2)\;is}\\\\\;\;\;\;\mathsf{d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}\\$\end{minipage}}

Answered by vinod04jangid
0

Answer:

+8 and -8

Step-by-step explanation:

Given:- The distance of the point (-6,y) from origin is 10 units.

To Find:- Value of y.

Solution:- The distance of the point (-6,y) from origin(0,0) is 10 units.

As we know,

Distance = \sqrt{(x_{2}-x_{1} )^{2} + (y_{2}-y_{1} )^{2}  }

⇒ 10 = \sqrt{(0-( -6 ))^{2} + (0-y)^{2} }

⇒ 10 = \sqrt{(6)^{2}+y^{2}  }

(10)^{2} = 36 + y^{2}

y^{2} = 100 - 36

y=\sqrt{64}

y = ^{} ±8

∴ The value of y is ±8.

#SPJ2

Similar questions