Physics, asked by Anonymous, 2 months ago

The distance of planet Jupiter from the sun is 5.2 times that of the Earth. Find the period of revolution of Jupiter around the sun.​

Answers

Answered by Anonymous
3

\large \underline{\underline{\bf{ \pink{Given : }}}}

 \\

✧ Distance of planet Jupiter from the Sun is 5.2 times that of the earth.

  •  \sf : \implies r_j = 5.2 \times r_e

✧ Period of revolution of Earth around the sun = 1 year

  •  \sf : \implies T_e = 1 \: year

 \\

\large \underline{\underline{\bf{ \pink{To \: Find :}} }}

 \\

Period of revolution of Jupiter around the sun,  \sf T_j = ?

 \\

\large \underline{\underline{\bf{ \pink{Solution : }}}}

 \\

Now, We know that :

 \dag \underline{\boxed{\pink{\bf \dfrac{T_j ^2}{T_e ^2} = \dfrac{r_j ^3}{r_e ^3}}}}

 \\

 \sf : \implies T_j = T_e\Bigg( \dfrac{r_j}{r_e}\Bigg)^{\frac{3}{2}}

 \\

By substituting values :

 \sf : \implies T_j = 1 \times \Bigg( \dfrac{5.2 r_e}{r_e}\Bigg)^{\frac{3}{2}}

 \sf : \implies T_j =  \Bigg( \cancel{\dfrac{5.2 r_e}{r_e}}\Bigg)^{\frac{3}{2}}

 \sf : \implies T_j = (5.2)^{\frac{3}{2}}

 \sf : \implies T_j = 11.86 (approx.)

 \\

\underline{\boxed{\pink{\bf T_j = 11.86\: years \: (approx.)}}}

 \\

 \underline{\textsf{Hence, Period of revolution of Jupiter around the Sun is approximately \pink{11.86 years}}}

Answered by Anonymous
1

\large \underline{\underline{\bf{ \pink{Given : }}}}

Given:

\begin{gathered}\\\end{gathered}

✧ Distance of planet Jupiter from the Sun is 5.2 times that of the earth.

\sf : \implies r_j = 5.2 \times r_e:⟹r

j

=5.2×r

e

✧ Period of revolution of Earth around the sun = 1 year

\sf : \implies T_e = 1 \: year:⟹T

e

=1year

\begin{gathered}\\\end{gathered}

\large \underline{\underline{\bf{ \pink{To \: Find :}} }}

ToFind:

\begin{gathered}\\\end{gathered}

Period of revolution of Jupiter around the sun, \sf T_jT

j

= ?

\begin{gathered}\\\end{gathered}

\large \underline{\underline{\bf{ \pink{Solution : }}}}

Solution:

\begin{gathered}\\\end{gathered}

Now, We know that :

\dag \underline{\boxed{\pink{\bf \dfrac{T_j ^2}{T_e ^2} = \dfrac{r_j ^3}{r_e ^3}}}}†

T

e

2

T

j

2

=

r

e

3

r

j

3

\begin{gathered}\\\end{gathered}

\sf : \implies T_j = T_e\Bigg( \dfrac{r_j}{r_e}\Bigg)^{\frac{3}{2}}:⟹T

j

=T

e

(

r

e

r

j

)

2

3

\begin{gathered}\\\end{gathered}

By substituting values :

\sf : \implies T_j = 1 \times \Bigg( \dfrac{5.2 r_e}{r_e}\Bigg)^{\frac{3}{2}}:⟹T

j

=1×(

r

e

5.2r

e

)

2

3

\sf : \implies T_j = \Bigg( \cancel{\dfrac{5.2 r_e}{r_e}}\Bigg)^{\frac{3}{2}}:⟹T

j

=(

r

e

5.2r

e

)

2

3

\sf : \implies T_j = (5.2)^{\frac{3}{2}}:⟹T

j

=(5.2)

2

3

\sf : \implies T_j = 11.86 (approx.):⟹T

j

=11.86(approx.)

\begin{gathered}\\\end{gathered}

\underline{\boxed{\pink{\bf T_j = 11.86\: years \: (approx.)}}}

T

j

=11.86years(approx.)

\begin{gathered}\\\end{gathered}

\underline{\textsf{Hence, Period of revolution of Jupiter around the Sun is approximately \pink{11.86 years}}}

Hence, Period of revolution of Jupiter around the Sun is approximately 11.86 years

Similar questions