Math, asked by Indahmhay9487, 10 months ago

The distance of the point (1,-5,9) from the plane x-y+z=5 measured along a straight line

Answers

Answered by MaheswariS
0

Answer:

\text{The distance of the point }(1,-5,9)\text{ from the plane x-y+z-5=0 is}

\bf|\frac{10}{\sqrt{3}}|.

Step-by-step explanation:

\text{Concept:}

\text{The distance of the point }(x_1,y_1,z_1)\text{ from the plane ax+by+cz+d=0 is}

\bf|\frac{ax_1+by_1+cz_1+d}{\sqrt{a^2+b^2+c^2}}|

\text{Now }

\text{The distance of the point }(1,-5,9)\text{ from the plane x-y+z-5=0 is}

|\frac{ax_1+by_1+cz_1+d}{\sqrt{a^2+b^2+c^2}}|

=|\frac{1(1)-1(-5)+(9)-5}{\sqrt{1^2+(-1)^2+(1)^2}}|

=|\frac{1+5+9-5}{\sqrt{1+1+1}}|

=\bf|\frac{10}{\sqrt{3}}| units

Similar questions