the distance S an object travels under the influence of gravity in time t seconds is given by S(t) = 1 ÷ 2 gt + at + b where (g=9.8 acceleration due to gravity) a,b are constant check if the function S(t) is one one function (5 mark sum)
Answers
Answered by
7
The distance S an object travels under the influence of gravity in time t is given by S(t) = 1/2 gt² + at + b .
we have to check function f(t) is one -one function or not .
selects two points
from its domain in such a way that
.function S(t) will be one-one function only when we will get
.
[ as you know domain of function is t ≥ 0 so, we can choose all positive real numbers ]
so,
or,![\frac{1}{2}gt_1^2+at_1+b=\frac{1}{2}gt_2^2+at_2+b \frac{1}{2}gt_1^2+at_1+b=\frac{1}{2}gt_2^2+at_2+b](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dgt_1%5E2%2Bat_1%2Bb%3D%5Cfrac%7B1%7D%7B2%7Dgt_2%5E2%2Bat_2%2Bb)
or,![\frac{1}{2}gt_1^2+at_1=\frac{1}{2}gt_2^2+at_2 \frac{1}{2}gt_1^2+at_1=\frac{1}{2}gt_2^2+at_2](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dgt_1%5E2%2Bat_1%3D%5Cfrac%7B1%7D%7B2%7Dgt_2%5E2%2Bat_2)
or,![\frac{1}{2}gt_1^2-\frac{1}{2}gt_2^2+at_1-at_2=0 \frac{1}{2}gt_1^2-\frac{1}{2}gt_2^2+at_1-at_2=0](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dgt_1%5E2-%5Cfrac%7B1%7D%7B2%7Dgt_2%5E2%2Bat_1-at_2%3D0)
or,![\frac{1}{2}g(t_1^2-t_2^2)+a(t_1-t_2)=0 \frac{1}{2}g(t_1^2-t_2^2)+a(t_1-t_2)=0](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7Dg%28t_1%5E2-t_2%5E2%29%2Ba%28t_1-t_2%29%3D0)
or,![(t_1-t_2)\left[\frac{1}{2}g(t_1+t_2)+a\right]=0 (t_1-t_2)\left[\frac{1}{2}g(t_1+t_2)+a\right]=0](https://tex.z-dn.net/?f=%28t_1-t_2%29%5Cleft%5B%5Cfrac%7B1%7D%7B2%7Dg%28t_1%2Bt_2%29%2Ba%5Cright%5D%3D0)
as you know,
can't be negative, if a is positive constant.
so,![t_1-t_2=0 t_1-t_2=0](https://tex.z-dn.net/?f=t_1-t_2%3D0)
or,![t_1=t_2 t_1=t_2](https://tex.z-dn.net/?f=t_1%3Dt_2)
hence, it is clear that S(t) is one-one function when constant a is positive constant.
we have to check function f(t) is one -one function or not .
selects two points
[ as you know domain of function is t ≥ 0 so, we can choose all positive real numbers ]
so,
or,
or,
or,
or,
or,
as you know,
so,
or,
hence, it is clear that S(t) is one-one function when constant a is positive constant.
Similar questions