Math, asked by Anonymous, 3 months ago

The domain of tan^-1 (2x + 1) is
(a) R. (b) R-{1/2} ., (C) R-{-1/2} , (d) None of these​

Answers

Answered by pulakmath007
1

The domain of  \sf{ { \tan}^{ - 1}(2x + 1) } is R

Given :

The function  \sf{ { \tan}^{ - 1}(2x + 1) }

To find :

The domain of  \sf{ { \tan}^{ - 1}(2x + 1) } is

(a) R

(b) R - {1/2}

(c) R - { - 1/2}

(d) None of these

Solution :

Step 1 of 2 :

Write down the given function

The function is  \sf{ { \tan}^{ - 1}(2x + 1) }

Step 2 of 2 :

Find the domain of the function

We know that  \sf{ { \tan}^{ - 1}x } is well defined when

 \sf  -  \infty  < x <  +  \infty

Thus we can say that  \sf{ { \tan}^{ - 1}(2x + 1) } is well defined when

 \sf  -  \infty  < 2x + 1 <  +  \infty

\displaystyle \sf{ \implies }  -  \infty  < x  <  +  \infty

\displaystyle \sf{ \implies x \in \: R}

So domain of  \sf{ { \tan}^{ - 1}(2x + 1) } is R

Hence the correct option is (a) R

Similar questions