Math, asked by SuckUuuh, 4 months ago

The earth taken out from a pit is evenly spread over a rectangular field of length 90 m, width 60 m. If the, volume of the earth dug is 3078 m³ . Find the height of the field raised.​

Answers

Answered by Gayathrisrinetha
2

Step-by-step explanation:

Volume of earth dug out =3696m

3

Length of rectangular field=80m

width of rectangular field=60m

∴ Height raised

=

Areaofrectangularpit

Volumeofearthdugout

=

80m×60m

3696m

3

=

4800

3696

m

=0.77m=77cm

Answered by thebrainlykapil
110

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The earth taken out from a pit is evenly spread over a rectangular field of length 90 m, width 60 m. If the, volume of the earth dug is 3078 m³ . Find the height of the field raised.

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Length = 90m
  • Width = 60m
  • Volume = 3078m^3

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \:To \: Find:- }}}

  • The height of the field .

 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Volume of the Earth Dug = ( L × W × H ) m^3

\qquad \quad {:} \longrightarrow \sf{\sf{3078 \:  =  \: (90 \:  \times  \: 60 \:  \times  \: h \: ) {m}   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{3078}{90 \:  \times  \: 60}m  \:  =  \:  \: height \: \:   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{3078}{5400} m \:  =  \:  \: height \: \:   }}\\ \\

1 metre = 100 cm

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{3078}{5400} \:  \times 100  \:  =  \:  \: height \: \:   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{3078}{54 \cancel{00}} \:  \times   \: 1 \cancel{00}\:  cm \:  =  \:  \: height \: \:   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{3078}{54 }cm    \:  =  \:  \: height \: \:   }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 57cm  \:  =  \:  \: height \: \:   }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Height \: = \: 57cm    }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

★ Additional Information :

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions