Math, asked by gowtham200121, 11 months ago

the eccentricity of the conic 36
 {x}^{2}  + 144 {y }^{2}  - 36x - 96y - 119 = 0

Answers

Answered by MaheswariS
3

\textbf{Given:}

36x^2+144y^2-36x-96y-119=0

36(x^2-x)+144(y^2-\frac{2}{3}y)-119=0

36(x^2-x+\frac{1}{4}-\frac{1}{4})+144(y^2-\frac{2}{3}y+\frac{1}{9}-\frac{1}{9})-119=0

36(x-\frac{1}{2})^2-9+144(y-\frac{1}{3})^2-16-119=0

36(x-\frac{1}{2})^2+144(y-\frac{1}{3})^2=144

\text{Divide both sides by 144}

\displaystyle\frac{(x-\frac{1}{2})^2}{4}+\frac{(y-\frac{1}{3})^2}{1}=1

\text{Clealry this is equation of ellipse with major axis is parallel to x axis}

\text{Here, }a^2=4\;\text{and}\;b^2=1

\text{Eccentricity}

=\displastyle\sqrt{1-\frac{b^2}{a^2}}

=\displastyle\sqrt{1-\frac{1}{4}}

=\displastyle\sqrt{\frac{3}{4}}

=\displastyle\frac{\sqrt{3}}{2}

\therefore\text{The eccentricity is}\;\frac{\sqrt{3}}{2}

Similar questions