Math, asked by sam9876, 6 months ago

The eccentricity of the ellipse represented by x = 5 (cos t + sin t), y = 3 (cos t – sin t) where t is parameter, is given by e, then 20e is equal to

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{Ellipse is}

\mathsf{x=5(cost+sint)}

\mathsf{y=3(cost-sint)}

\underline{\textsf{To find:}}

\textsf{The value of 20e}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{x=5(cost+sint)}

\mathsf{\dfrac{x}{5}=cost+sint}....(1)

\mathsf{y=3(cost-sint)}

\mathsf{\dfrac{y}{3}=cost-sint}....(2)

\mathsf{Squaring\;and\;adding\;(1)\;and\;(2)}

\mathsf{\dfrac{x^2}{25}+\dfrac{y^2}{9}=(cost+sint)^2+(cost-sint)^2}

\mathsf{\dfrac{x^2}{25}+\dfrac{y^2}{0}=(cos^2t+sin^2t+2\,sint\,cost)+(cos^2t+sin^2t-2\,sint\,cost)}

\mathsf{\dfrac{x^2}{25}+\dfrac{y^2}{9}=2}

\implies\mathsf{\dfrac{x^2}{50}+\dfrac{y^2}{18}=1}

\mathsf{Comparing\;this\;with\;standard\;form\;of\;ellipse\;\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;we\;get}

\mathsf{a^2=50\;\;\&\;\;b^2=18}

\mathsf{Then,}

\mathsf{Eccentricity,\;e=\sqrt{1-\dfrac{b^2}{a^2}}}

\mathsf{Eccentricity,\;e=\sqrt{1-\dfrac{18}{50}}}

\mathsf{Eccentricity,\;e=\sqrt{\dfrac{32}{50}}}

\mathsf{Eccentricity,\;e=\sqrt{\dfrac{16}{25}}}

\mathsf{Eccentricity,\;e=\dfrac{4}{5}}

\mathsf{20\,e=20{\times}\dfrac{4}{5}=4{\times}4=16}

\underline{\textsf{Answer:}}

\bf\,The\,value\,of\,20\,e\;is\;16

\underline{\textsf{Find more:}}

LIf vertices are (2,-2), (2, 4) and e =1/3

then equation of the ellipse is

​https://brainly.in/question/19651956

The eccentricity of an ellipse with its centre at the origin is 1/2.if one of the directrix is x=4,then equation of ellipse is

https://brainly.in/question/1373399

Answered by XxMissCutiepiexX
7

Step-by-step explanation:

\huge\bold{\underline{\underline{\red{Global\:warming}}}}

Climate change includes both the global warming driven by human emissions of greenhouse gases, and the resulting large-scale shifts in weather patterns

Similar questions