Math, asked by gowtham200121, 11 months ago

the eccentricity of the hyperbola
 4{x }^{2}  - 9 {y}^{2}  = 2ax +  {b}^{2}

Answers

Answered by SharmaShivam
10

Answer:

\sf{e=\dfrac{\sqrt{13}}{3}}

Step-by-step explanation:

\sf{\implies4x^2-9y^2=2ax+b^2}\\\sf{\implies4x^2-2ax-9y^2=b^2}\\\sf{\implies4\left(x^2+\dfrac{ax}{2}\right)-9y^2=b^2}\\\sf{\implies4\left(x^2-\dfrac{2ax}{4}+\dfrac{a^2}{16}-9y^2\right)=b^2-\dfrac{a^2}{4}}\\\sf{\implies4\left(x-\dfrac{a}{4}\right)^2-9y^2=b^2-\dfrac{a^2}{4}=k(say)}\\\sf{\implies\dfrac{\left(x-\dfrac{a}{4}\right)^2}{\dfrac{k}{4}}-\dfrac{y^2}{\dfrac{k}{9}}}\\\sf{\implies\:Let\:k>0}\\\sf{\implies\:Therefore,\:e=\sqrt{1+\dfrac{\dfrac{k}{9}}{\dfrac{k}{4}}}}\\\sf{\implies\:e=\sqrt{1+\dfrac{4}{9}}}\\\\\boxed{\sf{e=\dfrac{\sqrt{13}}{3}}}

Answered by Anonymous
13

\huge\underline \mathbb {SOLUTION:-}

Answer:

  • \mathsf \red {e =  \frac{ \sqrt{13} }{3} }

Given:

  • \mathsf \green {4x {}^{2}  - 9y {}^{2}  = 2ax + b {}^{2} }

\underline \mathsf \pink {According\:to\:question\: :-}

\mathsf \green {4x {}^{2}  - 9y {}^{2}  = 2ax + b {}^{2} }

\leadsto \mathsf {4x {}^{2}  - 2ax - 9y {}^{2}  = b {}^{2} }

\leadsto \mathsf {4(x {}^{2}  +  \frac{ax}{2} ) - 9y {}^{2}  = b {}^{2}}

\leadsto \mathsf {4(x {}^{2}  -  \frac{2ax}{4}  +  \frac{a {}^{2} }{16}  - 9y {}^{2}) =  b^{2} - \frac{a^{2}}{4} }

\leadsto \mathsf {4(x -  \frac{a}{4} ) {}^{2}  - 9y {}^{2}  = b {}^{2}  -  \frac{a {}^{2} }{4}  = k \: (Say)}

\leadsto  \frac{(x -  \frac{a}{4}) {}^{2} }{ \frac{k}{4} }  -  \frac{y {}^{2} }{ \frac{k}{9} }

\underline \mathsf \blue {Let\::-}

  • \mathsf {k > 0}

\underline \mathsf \pink {Hence\: :-}

\leadsto  e =  \sqrt{1 +  \frac{ \frac{k}{9} }{ \frac{k}{4} } }

\leadsto e =  \sqrt{1 +  \frac{4}{9} }

\mathsf \red {e =  \frac{ \sqrt{13} }{3} }

\underline \mathsf \blue {Therefore \: :-}

  • \mathsf \red {e =  \frac{ \sqrt{13} }{3} }

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions