Math, asked by jatinpatel, 1 year ago

The edges of a triangular board 12cm,16cm and 20cm. Find the cost of painting the board at the rate of 15 paise per cm square.

Answers

Answered by bhoomiarora2071
67

Here is your answer...

Attachments:

jatinpatel: plz send me clear pic
Answered by Anonymous
37

Given :

  • 1st edge of the Triangle = 12 cm
  • 2nd edge of the Triangle = 16 cm
  • 3rd edge of the Triangle = 20 cm
  • Rate of painting = 15 paise cm²

 \\  \\  \\

To Find :

  • Cost of Painting = ?

 \\  \\

Solution :

Formula Used :

  • {\underline{\boxed{\pmb{\sf{ S = \dfrac{a + b + c}{2} }}}}}

  • {\underline{\boxed{\pmb{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}}}

Where :

  • s = Semi - Perimeter
  • a = Side 1
  • b = Side 2
  • c = Side 3

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

Calculating the Semi - Perimeter :

\begin{gathered} {\implies{\qquad{\sf{ S = \dfrac{a + b + c}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{12+ 16 + 20}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{12 + 36}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{48}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \cancel\dfrac{48}{2} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Semi - Perimeter = 24\; cm }}}}}}}} \end{gathered} </p><p>

 \begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

Calculating the Area :

\begin{gathered} {\dashrightarrow{\qquad{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{24 (24 - 12)(24 - 16)(24 - 20)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{24 \times 12 \times 8 \times 4} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{12 \times 2 \times 12 \times 2  \times 2 \times 2 \times 2 \times 2 } }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area =12 \times 2\times 2 \times 2 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 24 \times 4 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\purple{\pmb{\frak{ Area = 96 \; {cm}^{2} }}}}}}}} \end{gathered} </p><p>

\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

Calculating The Cost :

\begin{gathered} {\longmapsto{\qquad{\sf{ Cost = Area \times Rate }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 96 \times 15 }}}} \; \; \; \; \; \bigg\lgroup {\pink{\sf{Rs. \; 1 = 100 \; Paise }}} \bigg\rgroup \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 96 \times \dfrac{15}{100} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 96 \times \cancel\dfrac{15}{100} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 0.15 \times 96 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\red{\pmb{\frak{ Cost = ₹ \; 14.4}}}}}}}} \end{gathered} </p><p></p><p>	</p><p>	</p><p> </p><p></p><p>\begin{gathered} \\ \qquad{\rule{150pt}{1pt}} \end{gathered}

❛❛ Cost of Painting the Triangular board is ₹ 14.4 .❜❜

\begin{gathered} \\ {\underline{\rule{300pt}{9pt}}} \end{gathered}

Similar questions