Physics, asked by sumitgolu2003, 11 months ago

The electrostatic force between charges of 200 µC and 500 µC placed in free space is 5 gf. Find the distance between the two charges. Take g = 10 ms-2​

Answers

Answered by Anonymous
4

 \mathtt{  \huge{\fbox{Solution :)}}}

Given ,

  • The two charges are 200 µC or 200 × (10)^-6 and 500 µC or 500 × (10)^-6 C

  • The electrostatic force between them is 5 gf or 5 × (10)^-2 newton

We know that , the electrostatic force between two charges is given by

\huge{ \mathtt{ \fbox{Force =  k\frac{ q_{1}q_{2}}{ {(r)}^{2} }} }}

Thus ,

 \sf \mapsto 5 \times  {(10)}^{ - 2}  =  \frac{9 \times  {(10)}^{9}  \times 200 \times   {(10)}^{ - 6}  \times 500 \times  {(10)}^{ - 6} }{ {(r)}^{2} }  \\  \\ \sf \mapsto 5 \times  {(10)}^{ - 2}  =  \frac{9 \times  {(10)}^{9}  \times 2 \times  {(10)}^{2}  \times  {(10)}^{ - 6} \times 5 \times  {10)}^{2}  \times  {(10)}^{ - 6}  }{ {(r)}^{2} }  \\  \\ \sf \mapsto  {(r)}^{2}  = \frac{9 \times  {(10)}^{9}  \times 2 \times  {(10)}^{2}  \times  {(10)}^{ - 6} \times 5 \times  {(10)}^{2}  \times  {(10)}^{ - 6}  }{ 5 \times {(10)}^{ - 2} } \\  \\ \sf \mapsto {(r)}^{2}  =   18 \times  {(10)}^{(9 + 2 - 6 + 2 - 6 + 2))}  \\  \\  \sf \mapsto  {(r)}^{2}  = 18000 \\  \\ \sf \mapsto r =  \sqrt{18000}  \\  \\ \sf \mapsto  r =134 \:  \: m \:  \: (approx)

Hence , the distance between two charges is 134 m

______________ Keep Smiling

Similar questions