Math, asked by VεnusVεronίcα, 1 month ago

The elevation of a tower at a station A due north of it is  \alpha and at a station B due west of A is \beta. Prove that the height of the tower is \dfrac{AB~sin\alpha ~ sin\beta}{\sqrt{sin^2\alpha-sin^2\beta}}.


★ Don't dare to spam!
★ Figure is a must.
★ Concise explaination is required.
★ Source : RD Sharma [ClassX CBSE]

Answers

Answered by mathdude500
65

Basic Concept Used :-

\boxed{ \bf \: {cot}^{2}x =  {cosec}^{2}x - 1}

\boxed{ \bf \:cosecx = \dfrac{1}{sinx}}

\boxed{ \bf \:cotx \:  =  \: \dfrac{Adjacent \: Side}{Opposite \: Side}}

\green{\large\underline{\sf{Solution-}}}

Let OC represents the tower of height 'h' units.

Let A be any point in North of tower OC

Let B be any point in West of tower OC.

Let OA = 'x' units and OB = 'y' units.

Now,

It is given that,

angle of elevation of tower at station A, due north i.e.

\rm :\longmapsto\:\angle OAC \:  =  \:  \alpha

and

angle of elevation of tower at station A, due west i.e

\rm :\longmapsto\:\angle OBC \:  =  \:  \beta

Now,

\rm :\longmapsto\:{ \sf \:In \: \triangle \:OAC}

\rm :\longmapsto\:cot \alpha  = \dfrac{OA}{OC}

\rm :\longmapsto\:cot \alpha  = \dfrac{x}{h}

\bf\implies \:x = h \: cot \alpha  -  -  - (1)

Now,

\rm :\longmapsto\:{ \sf \:In \: \triangle \:OBC}

\rm :\longmapsto\:cot  \beta   = \dfrac{OB}{OC}

\rm :\longmapsto\:cot  \beta   = \dfrac{y}{h}

\bf\implies \:y =  \: h \: cot \beta  -  -  - (2)

Now,

\rm :\longmapsto\:In \: \triangle \: OAB

Using Pythagoras Theorem,

\rm :\longmapsto\: {AB}^{2}  =  {y}^{2}   -   {x}^{2}

On substituting the values of x and y from above equations we get,

\rm :\longmapsto\: {AB}^{2}  =  {(h \: cot \beta )}^{2}   -   {(h \: cot  \alpha  )}^{2}

\rm :\longmapsto\: {AB}^{2}  =   {h}^{2} { (cot \beta)}^{2}   -    {h}^{2} {(cot  \alpha)}^{2}

\rm :\longmapsto\: {AB}^{2}  =   {h}^{2} {cot}^{2} \beta -{h}^{2} {cot}^{2} \alpha

\rm :\longmapsto\: {AB}^{2}  =   {h}^{2}( {cot}^{2} \beta -{cot}^{2} \alpha)

\rm :\longmapsto\: {AB}^{2}  =   {h}^{2} \bigg(( {cosec}^{2} \beta - 1) - \: ({cosec}^{2} \alpha \:  - 1) \bigg)

\rm :\longmapsto\: {AB}^{2} =  {h}^{2}( {cosec}^{2} \beta  -  {cosec}^{2} \alpha )

\rm :\longmapsto\: {AB}^{2} =  {h}^{2}\bigg(\dfrac{1}{ {sin}^{2}\beta} - \dfrac{1}{ {sin}^{2} \alpha}\bigg)

\rm :\longmapsto\: {AB}^{2} =  {h}^{2}\bigg(\dfrac{ {sin}^{2} \alpha  -  {sin}^{2} \beta }{ {sin}^{2}\beta \:  {sin}^{2}  \alpha } \bigg)

\rm :\longmapsto\: {h}^{2} = \dfrac{ {AB}^{2} {sin}^{2} \alpha \: {sin}^{2} \beta }{ {sin}^{2} \alpha  -  {sin}^{2} \beta }

\bf\implies \:h \:  =  \: \dfrac{AB \: sin \alpha  \: sin \beta }{ \sqrt{{sin}^{2} \alpha  -  {sin}^{2} \beta} }

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Attachments:
Answered by ThisIsYourFriend
4

Answer is in the attachment

Attachments:
Similar questions