Math, asked by Tanmaybakshi, 1 year ago

the eqiation \sqrt{x +1} - \sqrt{x - 1} = \sqrt{4x - 1 } has how many solutions ?​

Answers

Answered by Brainlyconquerer
1

Answer:

\huge{\bold{\mathsf{No\: solution (0 \: solutions)}}}

Step-by-step explanation:

\sqrt{x +1} - \sqrt{x - 1} = \sqrt{4x - 1 }

Squaring both sides

{(\sqrt{x +1} - \sqrt{x - 1} )}^{2}={( \sqrt{4x - 1 })}^{2}

 \implies{\mathsf{(x + 1) + (x - 1) - 2 \times  \sqrt{ {x }^{2} - 1 }  = 4x - 1}} \\  \\  \implies{\mathsf{2x - 4x + 1 = 2 \sqrt{ {x}^{2} - 1 } }} \\  \\\implies{\mathsf{ 1 - 2x = 2 \sqrt{ {x}^{2} - 1 } }} \\  \\  \implies{\mathsf{ \frac{1 - 2x}{2}  =  \sqrt{ {x}^{2} - 1 }}}  \\  \\  \implies{\mathsf{ \frac{ {(1 - 2x)}^{2} }{4}  =  {x}^{2}  - 1 }} \\  \\ \implies{\mathsf{1 + 4 {x}^{2}  - 2 \times 2x = 4 {x}^{2}  - 4 }}  \\  \\ \implies{\mathsf{1 + 4 {x}^{2}  - 4x = 4 {x}^{2}  - 4 }} \\  \\ \implies{\mathsf{ 4x = 5 }} \\  \\ \implies{\boxed{\mathsf{x =  \frac{5}{4} }}}

here we get value of x

Now , put this value in given equation

\sqrt{x +1} - \sqrt{x - 1} = \sqrt{4x - 1 }

\implies{\mathsf{ \sqrt{ \frac{5}{4} + 1 }   -  \sqrt{ \frac{5}{4} - 1 }  =  \sqrt{4 \times ( \frac{5}{4})  - 1} }} \\  \\ \implies{\mathsf{ \sqrt{ \frac{9}{4} }  -  \sqrt{ \frac{1}{4} }  =  \sqrt{4} }} \\  \\ \implies{\mathsf{ \frac{3}{2}  -  \frac{1}{2}  = 2}} \\  \\  \implies{\mathsf{ \frac{2}{2}  = 2 }} \\  \\ \implies{\mathsf{1 = 2}}

Here we get L.H.S = 1 and R.H.S = 2

L.H.S ≠ R.H.S

So, this value of x doesn't satisfy the given equation

Thus , This equation have no solutions.

\rule{200}{2}

\boxed{\huge{\bold{\mathsf{ IDENTITIES \: USED}}}} :-

(a - b )² = a² + b² - 2ab

Similar questions