Math, asked by seemakumarilaxmi, 4 months ago

The equal aides of the
isosceles triangle are
12 cm, and the perimeter is 30cm. The
area of this triangle is:

Answers

Answered by Intelligentcat
10

Given :-

  • The equal side of the isosceles triangle is 12 cm.

  • Perimeter of the isosceles triangle is 30 cm

Have to find :-

  • What's the area of the triangle.

Solution :-

Let's find out the third side of the isosceles triangle first.

So, we consider the unknown side of the triangle → x cm.

As we know the formula of perimeter of triangle.

Applying it here.

  • P = a + b + c [ sum of all it's sides ]

Now, substituting the values in the above formula,

So,

p → " 30 "

a → " 12 "

b → " 12 "

c → " x "

:\implies \bf{P = a + b + c} \\ \\ \\ :\implies \bf{30 = 12 + 12 + x} \\ \\ \\ :\implies \bf{30 - 24 = x} \\ \\ \\ :\implies \bf{6 = x} \\ \\ \\ \boxed{\therefore \bf{x = 6}} \\ \\

Then, The third side is " x " → 6 cm

____________________________

Now , Applying the formula for area of a isosceles triangle i.e,

\boxed{\bf{A = \dfrac{1}{4}b\sqrt{4a^{2} - b^{2}}}}

Here, we know that

b = Base / Third side of triangle.

a = Equal side of triangle.

Substituting the values in the above formula :

:\implies \bf{A = \dfrac{1}{4}b\sqrt{4a^{2} - b^{2}}} \\ \\ \\

:\implies \bf{A = \dfrac{1}{4} \times 6 \times \sqrt{(4 \times 12^{2}) - 6^{2}}} \\ \\ \\

:\implies \bf{A = \dfrac{1}{\not{4}^{2}} \times \not{6}^{3} \times \sqrt{(4 \times 12 \times 12) - 6^{2}}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times \sqrt{(4 \times 144) - 36}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times \sqrt{576 - 36}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times \sqrt{576 - 36}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times \sqrt{540}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times \sqrt{2 \times 2 \times 3 \times 3 \times 15}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times 2 \times 3 \sqrt{15}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{2} \times 6\sqrt{15}} \\ \\ \\

:\implies \bf{A = \dfrac{3}{\not{2}} \times \not{6\sqrt{15}}} \\ \\ \\

:\implies \bf{A = 3 \times 3\sqrt{15}} \\ \\ \\

:\implies \bf{A = 9\sqrt{15}} \\ \\ \\

\underline{\boxed{\therefore \bf{A = 9\sqrt{15}\:cm^{2}}}} \\ \\ \\

Thus ,

Our Final answer { the area of triangle } → 9√15 cm².


Anonymous: Awesome as always :smile: ❤
Anonymous: Perfect :D
Answered by Anonymous
29

Answer:

Correct Question:–

1) An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

To find,

  • Area of the triangle

Given as,

Perimeter of isosceles triangle = 39cm

Each side of the triangle = 12cm

( We have to use Herons formula to find the area of the triangle )

Solution:-

⟹ a + b + c = 30

⟹ 24 + c = 30

⟹ c = 6cm

S=\frac{30}{2} =15 cm

Herons formula:–

area =  \sqrt{s(s - a)(s-b)(s-c}  \\ \\ = \sqrt{15(15-12)(15-12)(15-6)}  \\ = \sqrt{15×3²×9}  = 9 \sqrt{15}  {cm}^{2}

Hope it helps uh!


Anonymous: Thank uh!
Anonymous: Fabulous ❤️
Anonymous: Thank uh miss;
Similar questions