Math, asked by devanshdeb2006, 10 months ago

The equation 24x2+25x−47 ax−2 =−8x−3− 53 ax−2 is true for all values of x≠ 2 a , where a is a constan

Answers

Answered by ACCIDENTALEXPERT
2

Answer:

Step-by-step explanation:

here are two ways to solve this question. The faster way is to multiply each side of the given equation by ax−2 (so you can get rid of the fraction). When you multiply each side by ax−2, you should have:

24x2+25x−47=(−8x−3)(ax−2)−53

You should then multiply (−8x−3) and (ax−2) using FOIL.

24x2+25x−47=−8ax2−3ax+16x+6−53

Then, reduce on the right side of the equation

24x2+25x−47=−8ax2−3ax+16x−47

Since the coefficients of the x2-term have to be equal on both sides of the equation, −8a=24, or a=−3.

The other option which is longer and more tedious is to attempt to plug in all of the answer choices for a and see which answer choice makes both sides of the equation equal. Again, this is the longer option, and I do not recommend it for the actual SAT as it will waste too much time.

Answered by rosey25
2

Answer:

Multiply both sides of the given equation by ax−2. When you multiply each side by ax−2, you should have:

24x2+25x−47=(−8x−3)(ax−2)−53

You should then multiply (−8x−3) and (ax−2) using FOIL.

24x2+25x−47=−8ax2−3ax+16x+6−53

Then, reduce on the right side of the equation

24x2+25x−47=−8ax2−3ax+16x−47

Since the coefficients of the x2-term have to be equal on both sides of the equation, −8a=24, or a=−3.

so answer is -3

hope u help dear..

Similar questions