The equation
24x2+25x−47
ax−2
=−8x−3−
53
ax−2
is true for all values of x≠
2
a
, where a is a constant.
What is the value of a?
ANYONE ONLINE
Answers
Answered by
2
Answer:
You should then multiply (−8x−3) and (ax−2) using FOIL.
24x2+25x−47=−8ax2−3ax+16x+6−53
Then, reduce on the right side of the equation
24x2+25x−47=−8ax2−3ax+16x−47
Since the coefficients of the x2-term have to be equal on both sides of the equation, −8a=24, or a=−3.
so answer is -3
Explanation:
pls mark as branilest
Answered by
2
Answer:
The equation
24x2+25x−47
ax−2
=−8x−3−
53
ax−2
is true for all values of x≠
2
a
, where a is a constant.
The equation
24x2+25x−47
ax−2
=−8x−3−
53
ax−2
is true for all values of x≠
2
a
, where a is a constant.
The equation
24x2+25x−47
ax−2
=−8x−3−
53
ax−2
is true for all values of x≠
2
a
, where a is a constant.
Explanation:
The equation
24x2+25x−47
ax−2
=−8x−3−
53
ax−2
is true for all values of x≠
2
a
, where a is a constant.
Three words kya bolu Banna hkm
Similar questions