Math, asked by MrGunda, 2 months ago

.
The equation above shows how temperature F, measured in degrees Fahrenheit, relates to a temperature C, measured in degrees Celsius. Based on the equation, which of the following must be true?

1. A temperature increase of 1 degree Fahrenheit is equivalent to a temperature  \huge \: \frac{5}{9} degree Celsius.

2. A temperature increase of 1 degree Celsius is equivalent to a temperature increase of 1.8 degrees Fahrenheit.

3. A temperature increase of  \huge \: \frac{5}{9} degree Fahrenheit is equivalent to a temperature increase of 1 degree Celsius

A) I only
B) II only
C) III only
D) I and II only

Answers

Answered by ItzAbhi47
8

\huge\sf\red{Answer}:

\huge\sf\underline{Given}:

 =  \sf \frac{5}{9} (f - 32)

      \sf \: f =  \frac{5}{9}(c)  + 32

\huge\sf\green{If\: F'\: = F + 1}

 \sf \: c' =  \frac{5}{9} (f' - 32)

 \sf c' \:  =  \frac{5}{9} (f + 1 - 32)

 \sf  c'  =  \frac{5}{9} (f - 32) +  \frac{5}{9}  \times 1

 \sf \: hence \: c' \:  = c  +  \frac{5}{9}

\huge\sf\fbox\blue{ Hence a temperature increases of 1 Degree of Fahrenheit is equal to a temperature increase of 5 by 9 degree Celsius}

\sf\blue{ Hence \:  a \:  temperature \:  increases \:  of \:  1 \: Degree \:  of \:  Fahrenheit \:  is \:  equal \:  to \:  a \:  temperature \:  increase \:  of \:   \frac{5}{9}  degree \:  Celsius \: }</p><p>

\sf\red{Therefore\: first\: statement\: is\: true\:}

 \sf(II) \: if  \: c' = c + 1

 \sf \: f' =   \frac{9}{5}c'  + 32

 \sf \: f'  =  \frac{9}{5}(c + 1) + 32

 \sf \:  f'  = ( \frac{9}{5}c \:  + 32 \: ) +  \frac{9}{5}

 \sf \: f'  = f +  \frac{9}{5}

 \sf \: f'  = f + 1.8

\sf\blue{ Hence \:  a \:  temperature \:  increases \:  of \:  1 \: Degree \:  of \:  Fahrenheit \:  is \:  equal \:  to \:  a \:  temperature \:  increase \:  of \:   1.8 \:   degree \:  fahenheit \: }</p><p>

\sf\purple{Therefore\: second\: statement\: is\: true\:}

Answered by Itzpureindian
4

hence temprature decresing 1 celcius

Similar questions