Math, asked by rohitbhai56961, 13 hours ago

the equation im(iz-2/z-1)+1=0, represent a part of circle having radius

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{Im \left( \dfrac{iz - 2}{z - 1}  \right) = 0}

Put z = x + iy

 \tt{ \implies \: Im \left( \dfrac{ix - y - 2}{x + iy - 1}  \right) = 0}

 \tt{ \implies \: Im \left[ \dfrac{ - (y  +  2) +  ix}{(x - 1) + iy }  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{ \big \{ - (y  +  2) +  ix \big \} \big \{ (x - 1) - iy\big \}}{ \big \{(x - 1) + iy  \big \} \big \{ (x - 1) - iy\big \}}  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{  - (y  +  2)(x - 1) +  ix  (x - 1)  +  iy(y + 2) - ix \cdot \: iy}{  (x - 1 )^{2} + {y}^{2}  }  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{ (y  +  2)(1 - x) +  ix^{2}  -  ix +  iy^{2}  + 2yi- i^{2}  \: x \: y}{  (x - 1 )^{2} + {y}^{2}  }  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{y - xy + 2 - 2x  +  ix^{2}  -  ix +  iy^{2}  + 2yi +   \: x \: y}{  (x - 1 )^{2} + {y}^{2}  }  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{y + 2 - 2x  +  ix^{2}  -  ix +  iy^{2}  + 2yi }{  (x - 1 )^{2} + {y}^{2}  }  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{(y  - 2x  + 2) +   \left(x^{2} +  y^{2}   - x  + 2y \right) i}{  (x - 1 )^{2} + {y}^{2}  }  \right] = 0}

 \tt{ \implies \: Im \left[ \dfrac{(y  - 2x  + 2) }{ (x - 1 )^{2} + {y}^{2} }+  \dfrac{  \left(x^{2} +  y^{2}   - x  + 2y \right) i}{  (x - 1 )^{2} + {y}^{2}  }  \right] = 0}

 \tt{ \implies  \dfrac{  x^{2} +  y^{2}   - x  + 2y }{  (x - 1 )^{2} + {y}^{2}  }  = 0}

 \tt{ \implies  x^{2} +  y^{2}   - x  + 2y = 0}

 \tt{ \green{Required \:  \:  \: radius} =  \sqrt{ \left( \dfrac{1}{2}  \right)^{2}  + (1)^{2}  - 0} }

 \tt{  \implies\green{Required \:  \:  \: radius} =  \sqrt{  \dfrac{1}{4}    + 1} } \\

 \tt{  \implies\green{Required \:  \:  \: radius} =  \sqrt{  \dfrac{5}{4}   } } \\

 \tt{  \implies\green{Required \:  \:  \: radius} =   \dfrac{\sqrt{ 5   }}{2} } \\

Similar questions