Math, asked by rogpjhonny, 10 months ago

The equation of a function is y= -1/3 x -2/5. Find

a) the value of y when x=4

b) the value of x when y= -2/3

Answers

Answered by Anonymous
19

Given equation :

 \tt \implies y = - \dfrac{1}{3}x -  \frac{2}{5}

To Find :

  1. Value of y when x=4
  2. Value of x when y= -2/3

Solution :

Case 1

 \tt \implies y = - \dfrac{1}{3} \times 4 -  \frac{2}{5}   \\  \\ \tt \implies y = - \dfrac{4}{3} -  \frac{2}{5} \\  \\  \tt \implies y = \frac{ - 20 - 6}{15} \\  \\ \implies  \boxed{ \tt y = \frac{ - 26}{15}}

Case 2

 \tt \implies y = - \dfrac{1}{3}x -  \frac{2}{5} \\  \\ \tt \implies  - \frac{2}{3}  = - \frac{1}{3} x -  \frac{2}{5} \\  \\\tt \implies -\frac{1}{3}x =  -  \frac{ 2}{3} +  \frac{2}{5}  \\  \\\tt \implies -\frac{1}{3}x =  \frac{ - 10 + 6}{15}  \\  \\  \tt \implies -\frac{1}{3}x =  \frac{ - 4}{15} \\  \\\tt \implies x =  \frac{ - 4}{15}  \times (-3) \\  \\\tt \implies x =  \frac{12}{15}  \\  \\ \large \implies \boxed{ \tt x =  \frac{4}{5} }

Answered by Vamprixussa
12

Given equation,

y = \dfrac{-1}{3} x - \dfrac{2}{5}\\

a) When x = 4

\implies y = \dfrac{-1}{3} (4) - \dfrac{2}{5}\\

\implies y = \dfrac{-4}{3}-\dfrac{2}{5}

\implies y = \dfrac{-20-6}{15}

\implies \boxed{\boxed{\bold{y = \dfrac{-26}{15} }}}}}

b) When y = -2/3

\implies \dfrac{-2}{3} = \dfrac{-1}{3}x-\dfrac{2}{5}

\implies \dfrac{-1}{3}x=\dfrac{-2}{3}+\dfrac{2}{5}

\implies \dfrac{-1}{3}x=\dfrac{-10+6}{15}

\implies \dfrac{-1}{3}x=\dfrac{-4}{15}

\implies x = \dfrac{-4}{15} * \dfrac{3}{-1}

\implies \boxed{\boxed{\bold{ x = \frac{4}{5} }}}}}}

                                                             

Similar questions