Math, asked by subodhsharma919, 11 months ago

The equation of perpendicular bisector of two side AB and AC of a triangle ABC are x+y+1=0 And x-y+1=0,respectively .if circumradius of triangle ABC is 2 units , then focus of vertex A is

Answers

Answered by Rppvian2020
8

 \red{answer : }

equation for AB is y+2=-1(x-1)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)putting values from(4)→(2)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)putting values from(4)→(2)we get 5y=-4

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)putting values from(4)→(2)we get 5y=-4y = -

 \frac{4}{5}

and \: x =

 \frac{8}{5}

y=−

y=− 5

y=− 54

y=− 54

y=− 54 andx=

y=− 54 andx= 5

y=− 54 andx= 58

y=− 54 andx= 58

y=− 54 andx= 58

y=− 54 andx= 58 putting values from (3) to (1)

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 5

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52 )

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52 )y - 6 = 28/5- 46/5.(x + 7)y−6=

.(x + 7)y−6= −

.(x + 7)y−6= − 5

.(x + 7)y−6= − 546

.(x + 7)y−6= − 546

.(x + 7)y−6= − 546

.(x + 7)y−6= − 546 5

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528 .(x+7)

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=−

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 23

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314 (x+7)

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314 (x+7)23y - 138 = - 14x - 9823y−138=−14x−98

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314 (x+7)23y - 138 = - 14x - 9823y−138=−14x−98So, eqn of line BC is 23y +14x-40=0

Answered by Anonymous
3

Answer:

answer:

equation for AB is y+2=-1(x-1)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)putting values from(4)→(2)

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)putting values from(4)→(2)we get 5y=-4

equation for AB is y+2=-1(x-1)y+x+1=0 (1)equation of AC is y+2=2(x-1)y-2x+4=0 (2)the other bisectors line is x-y+5=0&x+2y=0 (3) & (4)putting values from(4)→(2)we get 5y=-4y = -

\frac{4}{5}

5

4

and \: x =

\frac{8}{5}

5

8

y=−

y=− 5

y=− 54

y=− 54

y=− 54 andx=

y=− 54 andx= 5

y=− 54 andx= 58

y=− 54 andx= 58

y=− 54 andx= 58

y=− 54 andx= 58 putting values from (3) to (1)

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 5

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52 )

y=− 54 andx= 58 putting values from (3) to (1)x=−3&y=2x=-3&y=2B point by plotting we get(−7,6)11 52 )y - 6 = 28/5- 46/5.(x + 7)y−6=

.(x + 7)y−6= −

.(x + 7)y−6= − 5

.(x + 7)y−6= − 546

.(x + 7)y−6= − 546

.(x + 7)y−6= − 546

.(x + 7)y−6= − 546 5

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528

.(x + 7)y−6= − 546 528 .(x+7)

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=−

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 23

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314 (x+7)

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314 (x+7)23y - 138 = - 14x - 9823y−138=−14x−98

.(x + 7)y−6= − 546 528 .(x+7)y - 6 = - \frac{14}{23} (x + 7)y−6=− 2314 (x+7)23y - 138 = - 14x - 9823y−138=−14x−98So, eqn of line BC is 23y +14x-40=0

Step-by-step explanation:

hope it will help you. ...........

Similar questions