Math, asked by shalltakar, 1 day ago

the equation of the line joining the point (3, 5) to the point of intersection of the lines
4x + y - 1 = 0 and 7x - 3y - 35 = 0 ​

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find :  \\ equation \: of \: straight \: line \\  \\ so \: here \\ given \: simultanous \: equations \: are \\  \\ 4x + y = 1 \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   (1) \\ 7x - 3y = 35 \:  \:  \:  \:  \:  \:  \:  \:  \: (2) \\  \\ applying \:  \: now \\ (1) \times 3 \\  \\ 12x + 3y = 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (3) \\  \\ applying \: then \\ (2) + (3) \\  \\ 19x = 38 \\  \\ x = 2 \\  \\ substituting \: value \: of \:  \: x \: in \: (1)  \\ we \: get \\  \\ y =  - 7

so \: let \: then \\ (x1,y1) = (3,5) \\ (x2,y2) = (2, - 7) \\  \\ we \:   know \: that \\ two \: points \: form \:  \: equation \: of \: any \\ straight \: line \: is \\ given \: by :  \\  \\  \frac{x - x1}{x1 - x2}  =  \frac{y - y1}{y1 - y2}  \\  \\  \frac{x - 3}{3 - 2}  =  \frac{y - 5}{5 - ( - 7)}  \\  \\  \frac{x - 3}{1}  =  \frac{y - 5}{5 + 7}  \\  \\ x - 3 =  \frac{y - 5}{12}  \\  \\ 12(x - 3) = y - 5 \\  \\ 12x - 36 = y - 5 \\  \\ 12x - y = 31 \\  \\ or \\  \\ 12x - y - 31 = 0

hence \:  \: equation \: of  \: the  \: line \:  \\  joining  \: the \:  point  \: (3, 5)  \: to  \: the \:  point  \: of  \:  \\ intersection \:  of \:  the  \: lines \:  \:  \\ </p><p>4x + y - 1 = 0 \:  \:   \\ and \:  \:   \:  \: 7x - 3y - 35 = 0  \:  \: is  \\ \:  \: given \: as \\  \\ 12 - y = 31

Similar questions