Math, asked by nishant203, 10 months ago

The equation of the line passing through the points (at1^2 , 2at1), (at2^2 , 2at2) is​

Answers

Answered by MaheswariS
82

\textbf{Given:}

\text{Points are}\;(a\,{t_1}^2,2a\,t_1)\;\text{and}\;(a\,{t_2}^2,2a\,t_2)

\textbf{To find:}

\text{The equation of line joining the given two points}

\textbf{Solution:}

\text{We know that,}

\text{The equation of line joining $(x_1,y_1)$ and $(x_2,y_2)$ is}

\dfrac{y-y_1}{y_2-y_1}=\dfrac{x-x_1}{x_2-x_1}

\dfrac{y-2a\,t_1}{2a\,t_2-2a\,t_1}=\dfrac{x-a\,{t_1}^2}{a\,{t_2}^2-a\,{t_1}^2}

\dfrac{y-2a\,t_1}{2a(t_2-\,t_1)}=\dfrac{x-a\,{t_1}^2}{a({t_2}^2-{t_1}^2)}

\dfrac{y-2a\,t_1}{2(t_2-\,t_1)}=\dfrac{x-a\,{t_1}^2}{({t_2}-{t_1})({t_2}+{t_1})}

\dfrac{y-2a\,t_1}{2}=\dfrac{x-a\,{t_1}^2}{({t_2}+{t_1})}

(y-2a\,t_1)({t_2}+{t_1})=2(x-a\,{t_1}^2)

({t_1}+{t_2})y-2a\,t_1({t_1}+{t_2})=2x-2a\,{t_1}^2

2a\,{t_1}^2-2a\,t_1({t_1}+{t_2})=2x-({t_1}+{t_2})y

2a\,{t_1}^2-2a\,{t_1}^2-2a\,{t_1}\,{t_2}=2x-({t_1}+{t_2})y

-2a\,{t_1}\,{t_2}=2x-({t_1}+{t_2})y

\text{Rearranging terms we get}

\bf\,2x-({t_1}+{t_2})y+2a\,{t_1}\,{t_2}=0

\textbf{Answer:}

\textbf{The required line is}

\boxed{\bf\,2x-({t_1}+{t_2})y+2a\,{t_1}\,{t_2}=0}

Answered by tanurakshu
43

Answer:

above is ur answer dear friends

Attachments:
Similar questions