Math, asked by premsai26, 1 year ago

The equation whose roots are 'K' times the roots of the equation ax + bx +c=0 is
1) ax? + Kbx + Kc=0
2) ax?+Kby+K?c=0
3) ax? + Kbx + K?c=0
4) ax +Kºbx+Kc=0​

Answers

Answered by MaheswariS
6

\textbf{Given:}

\text{Equation is $ax^2+bx+c=0$}

\textbf{To find:}

\text{The equation whose roots are k times roots of the given equation}

\textbf{Solution:}

\text{Let the roots of $ax^2+bx+c=0$ be $\alpha$ and $\beta$}

\text{Then,}

\alpha+\beta=\dfrac{-b}{a}

\alpha\,\beta=\dfrac{c}{a}

\text{Clearly, the roots of the required equation are $k\,\alpha$ and $k\,\beta$}

\textbf{Sum of the roots}

=k\,\alpha+k\,\beta

=k(\alpha+\beta)

=k(\dfrac{-b}{a})

=\dfrac{-kb}{a}

\textbf{Product of the roots}

=(k\,\alpha)(k\,\beta)

=k^2(\alpha\,\beta)

=k^2(\dfrac{c}{a})

=\dfrac{k^2c}{a}

\textbf{The required equation is}

x^2-(\text{sum of the roots})x+(\text{product of the roots})=0

x^2-(\dfrac{-kb}{a})x+\dfrac{k^2c}{a}=0

x^2+\dfrac{kb}{a}x+\dfrac{k^2c}{a}=0

a\,x^2+kb\,x+k^2c=0

\therefore\textbf{The required equation is}

\boxed{\bf\,a\,x^2+kb\,x+k^2c=0}

Find more:

If alpha,beta are the roots of equation x^2-5x+6=0 and alpha > beta then the equation with the roots (alpha+beta)and (alpha-beta) is

https://brainly.in/question/5731128

Answered by Agastya0606
2

Given : The equation ax² + bx +c = 0

To find:  The equation whose roots are 'K' times the roots of the equation ax² + bx +c = 0 ?

Solution:

  • Now we have given the equation: ax² + bx + c = 0

               x² + bx/a + c/a = 0

  • Let the roots be α,β.

               α+β = -b/a and αβ = c/a

  • Now multiplying it by k, we get:

               k(α+β) = k(-b/a) and kαkβ = k²(c/a)

  • So the equation is:

               x² - (k(α+β))x + k²(αβ) = 0

               x² - (k(-b/a))x + k²(c/a) = 0

               x² + (kb/a)x + k²(c/a) = 0

               ax² + kbx + k²c = 0

Answer:

             So the equation is ax² + kbx + k²c = 0.

Similar questions