The expression ,{Tan(x-pi/2).cos(3pi/2+x)-sin^3(7pi/2-x)} / cos(x-pi/2).tan(3pi/2+x)Simplifies to,A) (1+cos^2x)B)sin^2xC)-(1+cos^2x)D)cos^2x
Answers
Answered by
140
{tan(x-π/2).cos(3π/2+x)-sin³(7π/2-x)}/{cos(x-π/2)tan(3π/2+x)}
=[tan{-(π/2-x)}.cos{(π/2×3)+x}-sin³{(π/2×7)-x}]/[cos{-(π/2-x)}.tan{(π/2×3)+x}
=[-tan(π/2-x).sinx-(-cosx)³]/[cos(π/2-x).(-cotx)]
=(-cotx.sinx+cos³x)/[sinx.(-cotx)]
=[-(cosx/sinx).sinx+cos³x]/[sinx.(-cosx/sinx)]
={-cosx(1-cos²x)}/(-cosx)
=1-cos²x
=sin²x
=[tan{-(π/2-x)}.cos{(π/2×3)+x}-sin³{(π/2×7)-x}]/[cos{-(π/2-x)}.tan{(π/2×3)+x}
=[-tan(π/2-x).sinx-(-cosx)³]/[cos(π/2-x).(-cotx)]
=(-cotx.sinx+cos³x)/[sinx.(-cotx)]
=[-(cosx/sinx).sinx+cos³x]/[sinx.(-cosx/sinx)]
={-cosx(1-cos²x)}/(-cosx)
=1-cos²x
=sin²x
Answered by
20
Answer:
Hope this is helpful
please mark as brainliest
Attachments:
Similar questions
English,
8 months ago
Business Studies,
8 months ago
Physics,
8 months ago
English,
1 year ago
Hindi,
1 year ago