CBSE BOARD X, asked by rishika2977, 6 months ago

The expression  \frac{(x +  \frac{1}{y}) {}^{a}   \times (x -  \frac{1}{y}) {}^{b}  }{(y +  \frac{1}{x}) {}^{a}   \times (y -  \frac{1}{x} ) {}^{b} }  reduces to ?​

Answers

Answered by Anonymous
9

 \frac{(x +  \frac{1}{y}) {}^{a}   \times (x -  \frac{1}{y}) {}^{b}  }{(y +  \frac{1}{x}) {}^{a}   \times (y -  \frac{1}{x} ) {}^{b} }

 =  \frac{( \frac{xy + 1}{y} ) {}^{a}  \times ( \frac{xy - 1}{y} ) {}^{b} }{( \frac{xy + 1}{x} ) {}^{a}  \times ( \frac{xy - 1}{x} ) {}^{b} }

 =  \frac{ \frac{(x + y) {}^{a} }{y {}^{1} } \times  \frac{(xy - 1) {}^{b} }{y {}^{b} }  }{ \frac{(xy + 1) {}^{a} }{x {}^{a} } \times  \frac{(xy - 1) {}^{b} }{x {}^{b} }  }

 =  \frac{ \frac{1}{y {}^{a}  } \times  \frac{1}{y {}^{b} }  }{ \frac{1}{x {}^{a}  }  \times  \frac{1}{x {}^{b} } }  \\  \\  =  \frac{x {}^{a + b} }{y {}^{a + b} }  \\  \\  = ( \frac{x}{y} ) {}^{a + b}

Similar questions