Math, asked by hemakhandelwal20, 1 year ago

The external diameter of a 20 CM long and 1cm thick hollow iron pipe is 25cm. Determine the whole surface of the iron pipe​

Answers

Answered by VishalSharma01
101

Answer:

Step-by-step explanation:

\underline{\bold{Given:-}}

Height of pipe = 20 cm

External Diameter = 25 cm

Radius = \sf \frac{25}{2} =12.5 \: cm

Internal Diameter = 25 - 2 = 23 cm

Radius = \sf \frac{23}{2} =11.5 \: cm

\underline{\bold{To \: Find:-}}

Total surface area of the pipe

\underline{\bold{Formula \: to \: be \: used:-}}

\sf Total \: Surface \: Area = 2\pi h(R + r) + 2\pi (R^2 - r^2)

\underline{\bold{Solution:-}}

Let the external radius be R.

And the internal radius be r.

Putting all the values, we get

\sf\implies Total \: Surface \: Area = 2\pi h(R + r) + 2\pi (R^2 - r^2)

\sf\implies Total \: Surface \: Area =2\times\frac{22}{7}\times20\times(12.5 + 11.5)+2\times\frac{22}{7}\times[(12.5)^2 - (11.5)^2]

\sf\implies Total \: Surface \: Area =\frac{21120}{7}+\frac{1056}{7}

\sf\implies Total \: Surface \: Area =\frac{22176}{7}

\bf\implies Total \: Surface \: Area =3168 \: cm^2

Hence, The whole surface of the iron pipe​ is 3168 cm²


Anonymous: Fab work : )
Answered by Anonymous
134

AnswEr :

\bold{Given} \begin{cases}\sf{Height(h)=20  \: cm} \\ \sf{External \: Diameter=25  \: cm} \\ \sf{External \: Radius(R)= \dfrac{25}{2}  = 12.5 \:  cm} \\  \sf{Internal  \: Radius (r)=12.5  -  1 = 11.5  \: cm }\end{cases}

Now we will calculate TSA of Cylinder :

\longrightarrow \sf 2\pi h(R + r) + 2\pi( {R}^{2}  -  {r}^{2} )

\longrightarrow \sf  \bigg(2 \times \dfrac{22}{7} \times 20(12.5 + 11.5) \bigg) +  \bigg(2 \times \dfrac{22}{7} \times ( {(12.5)}^{2}  -  {(11.5)}^{2}  \bigg)

\longrightarrow \sf  \bigg(2 \times \dfrac{22}{7} \times 20 \times 24 \bigg) +  \bigg(2 \times \dfrac{22}{7} \times (12.5 + 11.5)(12.5- 11.5)  \bigg)

\longrightarrow \sf  \bigg(\dfrac{44 \times 480}{7} \bigg) +  \bigg(\dfrac{44 \times 24}{7}\bigg)

\longrightarrow \sf \dfrac{44}{7} \bigg(480 + 24\bigg)

\longrightarrow \sf \dfrac{44}{ \cancel7} \times \cancel{504}

\longrightarrow \sf 44 \times 72

\longrightarrow  \boxed{\large \sf 3168 \: cm^{2}}

WSA(TSA) of Cylinder is 3168 cm².

Attachments:

VishalSharma01: Great Answer as Always :)
Similar questions