The factors of the expression k2+4k-32are
Answers
Answer:
(k-4) (k+8)
Step-by-step explanation:
factor k2+4k−32.
To factor the quadratic function k2+4k−32,
we should solve the corresponding quadratic equation k2+4k−32=0.
Indeed, if k1 and k2 are the roots of the quadratic equation ak2+bk+c=0, then ak2+bk+c=a(k−k1)(k−k2).
Solve the quadratic equation k2+4k−32=0.
solve the quadratic equation k2+4k−32=0 by using quadratic formula.
(see in image also )
The standard quadratic equation has the form ak2+bk+c=0.
In our case, a=1, b=4, c=−32.
Now, find the discriminant using the formula D=b2−4ac: D=42−4⋅1⋅(−32)=144.
Find the roots of the equation using the formulas k1=−b−D−−√2a
and
k2=−b+D−−√2a
k1=−4−144−−−√2⋅1=−8
and
k2=−4+144−−−√2⋅1=4
Answer: k1=−8; k2=4
Therefore, k2+4k−32=(k−4)(k+8).
(k2+4k−32)=(k−4)(k+8)
Thus, k2+4k−32=(k−4)(k+8).
Answer:
Answer: k2+4k−32=(k−4)(k+8).