Math, asked by samarthupadhyay8101, 11 months ago

The factors of x³-1+y³+3xyare
A. (x-1+y)(x²+1+y²+x+y-xy)
B. (x+y+1)(x²+y²+1-xy-x-y)
C. (x-1+y)(x²-1-y²+x+y+xy)
D. 3(x+y-1)(x²+y²-1)

Answers

Answered by ashishks1912
0

The factors of the given expression x^3-1+y^3+3xyis (x-1+y)(x^2+1+y^2+x+y-xy)

Step-by-step explanation:

Given expression is x^3-1+y^3+3xy

To find the factors of the given expression :

  • From the options we can verify the factors .
  • First taking the expression (x-1+y)(x^2+1+y^2+x+y-xy)
  • Now we can verify whether the (x-1+y)(x^2+1+y^2+x+y-xy) satisfies the given expression
  • Solving the expression (x-1+y)(x^2+1+y^2+x+y-xy)
  • (x-1+y)(x^2+1+y^2+x+y-xy)
  • =x(x^2+1+y^2+x+y-xy)-1(x^2+1+y^2+x+y-xy)+y(x^2+1+y^2+x+y-xy) ( by using the distributive property )
  • =x(x^2)+x(1)+x(y^2)+x(x)+x(y)+x(-xy)-1(x^2)-1(1)-1(y^2)-1(x)-1(y)-1(-xy)+y(x^2)+y(1)+y(y^2)+y(x)+y(y)+y(-xy)
  • =x^{1+2}+x+xy^2+x^{1+1}+xy-x^{1+1}y-x^2-1-y^2-x-y+xy+x^2y+y+y^{1+2}+xy+y^{1+1}-xy^{1+1} ( by using the property a^m.a^n=a^{m+n} )
  • =x^3+x+xy^2+x^2+xy-x^2y-x^2-1-y^2-x-y+xy+x^2y+y+y^3+xy+y^2-xy^2 ( adding the like terms )
  • =x^3+3xy-1+y^3
  • Rewritting we get
  • =x^3-1+y^3+3xy
  • Therefore (x-1+y)(x^2+1+y^2+x+y-xy)=x^3-1+y^3+3xy

Therefore option A)  (x-1+y)(x^2+1+y^2+x+y-xy) is correct

The factors of the given expression x^3-1+y^3+3xyis (x-1+y)(x^2+1+y^2+x+y-xy)

Similar questions