Math, asked by saanvihoney, 6 months ago

The factrisation of x³ - 3x² - 9x - 5 is _____
Options:-

(x + 1)² (x - 5)

(x - 1)² (x - 5)

(x² - 1) (x - 5)

(x² - 1) (x + 5)

Answers

Answered by dna63
1

Step-by-step explanation:

We have,,

\sf{x^{3}-3x^{2}-9x-5}

First check whether x+1 is a factor of the given polynomial,

we have, \sf{p(x)=x^{3}-3x^{2}-9x-5}

\implies{\sf{p(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5}}

\implies{\sf{p(-1)=-1-3+9-5}}

\implies{\sf{p(-1)=0}}

Since result is zero therefore x+1 is a factor of the given polynomial,

Now,,

\sf{x^{3}-3x^{2}-9x-5}

\sf{=x^{3}+x^{2}-4x^{2}-4x-5x-5}

\sf{=x^{2}(x+1)-4x(x+1)-5(x+1)}

\sf{=(x+1)[x^{2}-4x-5]}

\sf{=(x+1)[x^{2}-5x+x-5]}

\sf{=(x+1)[x(x-5)+1(x-5)]}

\sf{=(x+1)[(x+1)(x-5)]}

\sf{=(x+1)(x+1)(x-5)}

\sf{=(x+1)^{2}(x-5)}

Therefore, option (i) is correct...

______________________________________

HOPE IT HELPS ❣️❣️❣️

Similar questions