Physics, asked by GMAX, 11 months ago

The figure shows a transparent slab of length 2 m placed in air. The refractive index of the slab varies along x-axis as μ = 2 + x2 (0 ≤ x ≤ 1). The optical path length of ray R will be

Answers

Answered by ishikavs
0

The optical path length of the ray R will be

 \int\limits^1_0 {2+x^2} \, dx  

= 2x + \frac{x^3}{3}  \left \| {{x=1} \atop {x=0}} \right.

= 2 + \frac{1}{3}

= \frac{7}{3}   m

Answered by PoojaBurra
1

Given :

Length  of the transparent slab = 2m

Refractive index of slab =  = 2 + x² (0≤ x ≤ 1)

To find :

The optical path length of ray R

Solution :

  • Optical path length of a material =   \int\limits^1_0{2+x^{2} } \, dx

                                                      =\left \{ {{x=1} \atop {x=0}} \right 2x+(x³/3)

                                                      =2+(1/3)

                                                      =7/3m

  • The optical path length of the material os 7/3m

                                                     

Similar questions