Math, asked by DarkSamurai, 1 year ago

The first and the last terms of an AP are 7 and 49respectively. If sum of all its terms is 420, find its common difference

Answers

Answered by AJAYMAHICH
1
Given,
                              a = 7 ---------------- (i)
             a + (n - 1)d = 49----------------(ii)
 n/2[a + a +(n - 1)d] = 420--------------(iii)

  By (i) and (ii) we get,
              7 + (n - 1)d = 49  ----------------(iv)

Similarly,
 By (i) and (iii) we have,
    n/2[7 + 7 + (n - 1)d] = 420
                   n/2[7 + 49] = 420           (From iv)
                         n/2(56) = 420
                               28n = 420 
                                   n = 420/28
                                      = 15---------------(v)

Substituting a = 7 & n = 15 [From (i) & (v)] in (ii)
   a + (n - 1)d = 49
         7 + 14d = 49
                14d = 42
                    d = 42/14
                       = 3

DarkSamurai: thank you dear
DarkSamurai: pls will u follow me
AJAYMAHICH: why miss ??
AJAYMAHICH: any reason
DarkSamurai: just like that
AJAYMAHICH: you say ???? any reason
AJAYMAHICH: then i will follow you
DarkSamurai: hmmm
DarkSamurai: i m new to brainly so...
AJAYMAHICH: then ??
Similar questions