Physics, asked by nagraj20012016, 10 months ago

The focal length of a concave lens is 30 cm. At what distance should the object be placed from the lens so that it forms an image at 20 cm from the lens

Answers

Answered by amitkumar44481
20

AnsWer :

- 60 cm.

To FinD :

The distance of object place.

SolutioN :

Let,

  • u object distance.
  • v image distance.
  • f focal length.

Where as,

  • f = 30 cm.
  • v = 20 cm.

\rule{50}1

Sign Convention.

  • f = - 30 cm.
  • v = - 20 cm.

☛ We know, Lens Formula.

 \tt  \dagger \:  \:  \:  \:  \: \fbox{ \dfrac{1}{f}  =  \dfrac{1}{v}  -  \dfrac{1}{u}}

 \tt  : \implies \dfrac{1}{ - 30}  =  \dfrac{1}{ - 20}  -  \dfrac{1}{u}

 \tt  : \implies \dfrac{1}{ - 30}  +  \dfrac{1}{20}  =  -  \dfrac{1}{u}

 \tt  : \implies \dfrac{ - 2 + 3}{ 60}   =  -  \dfrac{1}{u}

 \tt  : \implies \dfrac{ 1}{ 60}   =  -  \dfrac{1}{u}

 \tt  : \implies u =  - 60 \: cm.

Therefore, When we place object at a distance of 60 cm so that image form at distance of 20 cm.

\rule{200}3

More InformatioN :

Mirror Formula.

 \tt  \dagger \:  \:  \:  \:  \: \fbox{ \dfrac{1}{f}  =  \dfrac{1}{v}  +  \dfrac{1}{u}}

Lens Formula.

 \tt  \dagger \:  \:  \:  \:  \: \fbox{ \dfrac{1}{f}  =  \dfrac{1}{v}  -  \dfrac{1}{u}}

Magnification. ( for mirror )

 \tt  \dagger \:  \:  \:  \:  \: \fbox{M = \dfrac{h_i}{h_o}= \dfrac{-v}{u}}

Magnification. ( for lens )

 \tt  \dagger \:  \:  \:  \:  \: \fbox{M = \dfrac{h_i}{h_o}= \dfrac{v}{u}}

Answered by ItzAditt007
11

AnswEr:-

Your Answer is that the object should be 60 cm in front of the mirror.

ExplanaTion:-

Given:-

  • Focal length of concave lens (f) = -30cm. As focal length of a concave lens is always negative.

  • Image distance (v) = -20cm as image by concave mirror is always formed in front of lens.

To Find:-

  • The object distance (u).

Formula Used:-

Lens Formula:-

\tt\longrightarrow \dfrac{1}{v}  -  \dfrac{1}{u}  =  \dfrac{1}{f} .

So Here,

  • v = -20 cm.
  • u = ?? [To Find].
  • f = -30 cm.

Therefore lets put the values in formula:-

\tt\mapsto \dfrac{1}{v}  -  \dfrac{1}{u}  =  \dfrac{1}{f} . \\  \\  \tt\mapsto  \frac{1}{-20 \: cm}  -  \frac{1}{u}  =  \frac{1}{ - 30 \: cm.}  .\\ \\ \tt\mapsto -\frac{1}{20 \: cm}   -  \frac{1}{u}  =  -  \frac{1}{30 \: cm}. \\  \\ \tt\mapsto -  \frac{1}{u}  =  -  \frac{1}{30 \: cm}  +  \frac{1}{20 \: cm} . \\  \\ \tt\mapsto \frac{1}{u}  =  \frac{1}{30 \: cm} - \frac{1}{20 \: cm} . \\  \\  \tt\mapsto \frac{1}{u}  =  \frac{2 - 3}{60 \: cm} . \\  \\ \tt\mapsto \frac{1}{u}  = \frac{-1}{60 \: cm} . \\  \\ \tt\mapsto \frac{\cancel1}{u}  =  -\frac{\cancel1}{60 \: cm} \\  \\  \tt\mapsto u = -60 \: cm.

\tt\therefore The object should be placed 60 cm in front of the lens.

Similar questions