Physics, asked by shaili210430, 1 year ago

The focal length of the objective and eyepiece of a microscope are 1.25 cm and 5 cm respectively find the position of the object related to the objective in order to obtain an angular magnification of 30 in normal adjustment

Answers

Answered by thilakartpeks4f
19
Focal length of the objective lense (f0bj) = 1.25 cm

Focal length of the eyepiece (feye) = 5 cm

Distance of vision (d) = 25 cm

Angular magnification of the compound microscope = 30X

Total magnification power of the compound microscope (m)= 30

Angular magnification of the eyepiece

meye = (1+d/feye) = (1+25/5) = 6

Angular magnification of the object (mobj) is related to meye

Thus, mobj = m/ meye = 30/6 = 5

Also, mobj = image distance for the objective lens (vobj)/ Objective distance for the objective lens (-uobj)

5 = vobj /-uobj

vobj  = -uobj x 5                                      (i)

Using lens formula

1/ vobj  - 1/ uobj = 1/fobj

1/1.25= 1/-5 uobj - 1/ uobj

1/1.25= -6/ uobj

uobj = -6/5 x 1.25 = -1.5 cm

vobj = -5 uobj = -5 x (-1.5) = 7.5 cm

The object should be placed 1.5 cm away from the objective lens.

Using lens formula

1/ veye  - 1/ ueye = 1/feye

Where,  veye  = image distance for the eyepiece = -d = -25 cm

ueye = Object distance for the eyepiece

1/ ueye = 1/ veye  -  1/feye = -1/25 - 1/5 = -6/25

ueye = 4.17 cm

Separation between the objective lens and eyepiece = ueye + vobj = 4.17 + 7.5 = 11.67 cm

Answered by Anonymous
4

Answer:Focal length of the objective lense (f0bj) = 1.25 cm

Focal length of the eyepiece (feye) = 5 cm

Distance of vision (d) = 25 cm

Angular magnification of the compound microscope = 30X

Total magnification power of the compound microscope (m)= 30

Angular magnification of the eyepiece

meye = (1+d/feye) = (1+25/5) = 6

Angular magnification of the object (mobj) is related to meye

Thus, mobj = m/ meye = 30/6 = 5

Also, mobj = image distance for the objective lens (vobj)/ Objective distance for the objective lens (-uobj)

5 = vobj /-uobj

vobj  = -uobj x 5                                      (i)

Using lens formula

1/ vobj  - 1/ uobj = 1/fobj

1/1.25= 1/-5 uobj - 1/ uobj

1/1.25= -6/ uobj

uobj = -6/5 x 1.25 = -1.5 cm

vobj = -5 uobj = -5 x (-1.5) = 7.5 cm

The object should be placed 1.5 cm away from the objective lens.

Using lens formula

1/ veye  - 1/ ueye = 1/feye

Where,  veye  = image distance for the eyepiece = -d = -25 cm

ueye = Object distance for the eyepiece

1/ ueye = 1/ veye  -  1/feye = -1/25 - 1/5 = -6/25

ueye = 4.17 cm

Separation between the objective lens and eyepiece = ueye + vobj = 4.17 + 7.5 = 11.67 cm

Similar questions