Math, asked by anshu200423, 4 months ago

The foci of an ellipse are (± 5, 0) and eccentricity is -2, Find the equation of the ellipse.

Answers

Answered by amansharma264
31

EXPLANATION.

Foci of an ellipse = (±5, 0).

eccentricity = -2.

As we know that,

General formula of an ellipse.

⇒ x²/a² + y²/b² = 1.

We can write foci as,

⇒ (5,0) and (-5,0).

Using the distance formula, we get.

⇒ √(x₁ - x₂)² + (y₁ - y₂)².

⇒ √(5 - (-5))² + (0 - 0)².

⇒ √(5 + 5)².

⇒ √(10)².

⇒ √100 = 10.

Foci of an ellipse = (ae,0) and (-ae,0).

⇒ 2ae = 10.

⇒ ae = 5.

Squaring on both sides, we get.

⇒ (ae)² = (5)².

⇒ a²e² = 25.

Put the value of eccentricity = -2 in equation, we get.

⇒ a²(-2)² = 25.

⇒ a²4 = 25.

⇒ a² = 25/4.

As we know that,

Formula of eccentricity.

⇒ b² = a²(1 - e²).

⇒ b² = a² - a²e².

⇒ b² = 25/4 - 25.

⇒ b² = 25 - 100/25.

⇒ b² = -75/4.

Put the values in general equation of ellipse, we get.

⇒ x²/a² + y²/b² = 1.

⇒ x²/25/4 + y²/-75/4 = 1.

⇒ 4x²/25 - 4y²/75 = 1.

                                                                                                                       

MORE INFORMATION.

Standard form of the equation of ellipse.

(1) = x²/a² + y²/b² = 1 (when a > b).

(a) = Length of major axis = A₁A₂ = 2a.

(b) = Length of minor axis = B₁B₂ = 2b.

(c) = Vertices (a,0) and (-a,0).

(d) = Directrices = x = a/e  and  x = -a/e.

(e) = Foci : S(ae,0)  and  S'(-ae,0).

(f) = Length of latus rectum = 2b²/a.

(g) = eccentricity = b² = a²(1 - e²)  Or  e = √1 - b²/a².

(2) = x²/a² + y²/b² = 1 (when b < a).

(a) = Length of major axis = A₁A₂ = 2b.

(b) = Length of minor axis = B₁B₂ = 2a.

(c) = Vertices (0,b)  and  (0,-b).

(d) = Directrices, y = ±b/e.

(e) = Foci, (0, ±be).

(f) = Length of latus rectum = 2a²/b.

(g) = Eccentricity = a² = b²(1 - e²)  Or  e = √1 - a²/b².  

Similar questions